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Abstract. A set B ⊆ N is called low for Martin-Löf random if every
Martin-Löf random set is also Martin-Löf random relative to B. We
show that a ∆0

2 set B is low for Martin-Löf random iff the class of
oracles which compress less efficiently than B, namely the class

CB = {A | ∀n KB(n) ≤+ KA(n)}
is countable (where K denotes the prefix free complexity and ≤+ de-
notes inequality modulo a constant). It follows that ∆0

2 is the largest
arithmetical class with this property and if CB is uncountable, it con-
tains a perfect Π0

1 set of reals. The proof introduces a new method
for constructing non-trivial reals below a ∆0

2 set which is not low for
Martin-Löf random.

1. Introduction

One of the most popular approaches to the definition of an algorithmically
random sequence is the so-called measure-theoretic paradigm. According to
this doctrine, a random sequence should have certain stochastic proper-
ties. For example it should have about as many 0s as 1s. This approach
can be traced at least back to Von Mises’ work [vM19]. Church [Chu40]
built on these ideas and his main contribution to this area was to make
the connection with computability theory. Later, Martin-Löf [ML66] gave
a definitive mathematical definition of a random sequence by specifying a
canonical countable family of null sets and calling a sequence random when
it does not belong to any member of this family. This family is the collec-
tion of effectively null sets, i.e. sets of the form ∩jUj where (Uj) is a uniform
sequence of Σ0

1 classes such that µ(Uj) < 2−j−1. The idea behind this def-
inition is that each member of the canonical family represents a stochastic
test which looks for special properties of sequences. The sequences which
have algorithmically special features will belong to a member of this family,
hence they will not be random; and vice-versa. These sequences are called
Martin-Löf random.

Kolmogorov [Kol65] proposed that a string (a finite sequence) is random
if it does not have a short description. That is, any program that generates
it is more or less as long as the sequence itself. Levin [Lev73] and Chaitin
[Cha75] required that the underlying machine which gives descriptions must
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be prefix-free, i.e. it does not use two programs, one of which is an extension
of the other, to describe different strings. They also proposed that an infi-
nite sequence A is random if its initial segments have maximal descriptive
complexity (modulo a constant) with respect to prefix-free machines, i.e.
n ≤+ K(A � n) for every n ∈ N, where ≤+ means that the inequality ≤
holds for all n ∈ N provided that we add an integer constant on one side
of it, and K(σ) is the prefix-free complexity of a string σ: the length of the
shortest string τ in the domain of the universal1 prefix-free machine M such
that M(τ) = σ. In other words, a sequence is random if its initial segments
are incompressible. Let us call such sequences Kolmogorov-Levin-Chaitin
random.

The following result of Schnorr showed that these two approaches are
equivalent, thus demonstrating the robustness of this mathematical concept
of randomness.

Theorem 1.1 (Schnorr, see Chaitin [Cha75]). A sequence is Martin-Löf
random iff it is Kolmogorov-Levin-Chaitin random.

For an exposition of the basic concepts and results of algorithmic random-
ness we refer to [DHNT06] and for the history of the subject we refer to
[LV97, ZL70, vL87]. The definitions of algorithmic randomness mentioned
above relativize to any oracle X ∈ 2ω, in the same way that Turing compu-
tations relativize, thus forming the base of a theory of relative randomness.
In particular, given an oracle X let us denote the class of random sequences
relative to X by MLRX (and MLR = MLR∅)2 and the prefix-free complexity
relative to X by KX . The obvious way to compare the strength of two or-
acles A,B with respect to relative randomness (as opposed to, for example,
relative computation) is to say that A is weaker than B in the case that ev-
ery sequence which is derandomized by A, is also derandomized by B. Here
an oracle derandomizes a sequence if the latter has some special properties
relative to the oracle. Also, A is weaker than B as to the ability to compress
strings, if modulo a constant every string gets a shorter prefix-free descrip-
tion relative to B than it does relative to A. These comparison relations
between oracles were defined formally by Nies [Nie05].

Definition 1.1 (Nies [Nie05]). We say that A ≤LR B if every Martin-Löf
random set relative to B is also Martin-Löf random relative to A. We say
that A ≤LK B if KB(σ) ≤+ KA(σ) for all σ ∈ 2<ω.

The relation ≤LR was studied in [BLS08a, BLS08b, Sim07]. The reals B
such that MLR ⊆ MLRB (i.e. B ≤LR ∅) are sometimes called low for random.

1It is a well known fact that there is a universal prefix-free machine M , i.e. one that
describes strings in an optimal way with respect to any other prefix-free machine N and
up to a constant: for every finite string σ, if there is a string τ such that N(τ) = σ then
there is some τ ′ with |τ ′| ≤+ |τ | such that M(τ ′) = σ.

2The notation MLR is taken from [Nie08].
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The analog of Schnorr’s theorem for relative randomness was recently
given by Kjos-Hanssen/Miller/Solomon.

Theorem 1.2 (Kjos-Hanssen/Miller/Solomon [KHMSxx]). The relations
≤LR and ≤LK are equal.

This result demonstrates that this relation is a natural and robust way to
study relative randomness. The following, then, is a basic question about
relative randomness.

Question. Given an oracle B ∈ 2ω, how many oracles can compress at most
as well as B?

According to the discussion above, this is equivalent to asking how many
A ∈ 2ω are there such that KB(σ) ≤+ KA(σ) for all σ ∈ 2<ω, or even what
is the cardinality of the class

(1.1) CB = {A | MLRB ⊆ MLRA}.
We notice that CB is Borel, hence it is either countable or it contains a
perfect set. Let us give a brief history of the attempts that have taken place
in order to answer this question. We recall that a set B is low for Martin-Löf
random if MLR ⊆ MLRB, i.e. every Martin-Löf random set is also Martin-Löf
random relative to B. This notion was introduced in [KT99], where a non-
computable c.e. set with this property was constructed. In the list of open
questions on randomness [ASK00] Question 4.4 asked about the cardinality
of C∅ and whether this is a subclass of ∆0

2. Nies [Nie05] gave a positive
answer (see [BLS08a] for a direct proof), thus determining the cardinality
of CB for B = ∅. On the other hand, in [BLS08a] it was shown that CB
is uncountable for B = ∅′ and more generally for B in GL2, i.e. such that
(B ⊕ ∅′)′ <T B′′. A notion similar to lowness for Martin-Löf randomness
but weaker, was introduced in [NST05]. Recall the halting probability Ω of
a universal prefix-free machine. A set B is low for Ω if Ω is random relative
to B. Miller [Mil] showed that CB is countable whenever B is low for Ω.
This result prompted him to conjecture that CB is countable exactly when
B is low for Ω, but this remains unknown. Notice that since every 2-random
is low for Ω (see [NST05]) the class CB is countable for almost all B (all
but a set of measure 0). As far as local degree structures are concerned,
in [BLS08b] it was shown that there is a superlow c.e. set B such that CB
contains a perfect Π0

1 class. Here we show the following definitive result for
the case when the oracle is ∆0

2.

Theorem 1.3. If B is ∆0
2 and not low for Martin-Löf random then CB

contains a perfect Π0
1 class.

The proof of Theorem 1.3 makes use of a new method for constructing
reals with certain properties below a ∆0

2 set B which is not low for Martin-
Löf random. This can be viewed as a permitting technique, with some
similarities but a lot of differences to the simple, promptly simple permitting
(see [Soa87]), and the permitting of ∆0

2 fixed point free reals (see [Kuč86]).
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Corollary. If B is ∆0
2, then B is low for Martin-Löf random iff CB is

countable. Furthermore, if CB is uncountable then it contains a perfect Π0
1

set of reals.

Proof. One direction of the first claim follows from the result in [Nie05]
that if B is low for Martin-Löf random then CB is a subclass of ∆0

2, hence
countable. The other direction and the second claim follows from Theorem
1.3. �

It is known from [NST05] that there are low for Ω reals B (even in Σ0
2)

which are not low for random. Then the above mentioned result of Miller
[Mil] shows that ∆0

2 is the largest arithmetical class with the property of the
above corollary.

2. Preliminaries

In the following, we use c.e. sets of strings to generate subclasses of the
Cantor space. For example, a binary string σ is often identified with the
clopen set [σ] = {X | σ ⊂ X} and more generally, a set of strings M is often
identified with the open set

S(M) = {X ∈ 2ω | ∃n(X � n ∈M)}
of the Cantor space. Also, boolean operations, inclusion and measure on
sets of string refer to the sets of reals that they represent. Thus if M,N ⊆
2<ω then we define µ(M) := µ(S(M)) (where µ is the Lebesgue measure),
M ⊆ N iff S(M) ⊆ S(N), M ∩N := S(M)∩S(N), M ∪N := S(M)∪S(N)
and M −N := S(M)− S(N).

An oracle Σ0
1 class V is an oracle Turing machine which, given an oracle

A outputs a set of finite binary strings V A, representing an open subset of
the space 2ω . The oracle class V can be seen as a c.e. set of axioms 〈τ, σ〉
(where τ, σ ∈ 2<ω) so that

V A = {σ | ∃τ(τ ⊂ A ∧ 〈τ, σ〉 ∈ V )}
V ρ = {σ | ∃τ(τ ⊆ ρ ∧ 〈τ, σ〉 ∈ V )}

for A ∈ 2ω, ρ ∈ 2<ω. We denote the finite approximation of a parameter at
stage s of the universal enumeration of c.e. sets by the suffix [s]. An oracle
Martin-Löf test (Ue) is a uniform sequence of oracle Σ0

1 classes Ue such that
µ(UXe ) < 2−(e+1) and UXe ⊇ UXe+1 for all X ∈ 2ω, e ∈ N. A real A is called
B-random if for every oracle Martin-Löf test (Ue) we have A /∈ ∩eUBe . A
universal oracle Martin-Löf test is an oracle Martin-Löf test (Ue) such that
for every A,B ∈ 2ω, A is B-random iff A 6∈ ∩eUBe .

In [KH07] (see [BLS08a] for a different proof) it was shown that MLRB ⊆
MLRA iff for some member U of a universal oracle Martin-Löf test, there is
a Σ0

1(B) class V B with UA ⊆ V B and µ(V B) < 1. In the following we fix
U to be the second member of a universal oracle Martin-Löf test, so that
µ(UX) ≤ 2−2 for all X ∈ 2ω. We can choose U and the oracle test (Ui)
which is used below, such that U τ , U τi are clopen sets which are uniformly
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computable in i, τ (see [BLS08a]). By an LR reduction we mean an oracle
Σ0

1 class V such that µ(V X) < 1 for all X ∈ 2ω, and X is reducible to Y via
this reduction if UX ⊆ V Y . The following lemma is implicit in [BLS08a].

Lemma 2.1. Let U be a member of an oracle Martin-Löf test, B ∈ 2ω

and m ∈ N. Then there exists n ∈ N such that for all s, t > n we have
µ(UB�s − UB�t) < 2−m.

To show Lemma 2.1 we just have to notice that the negation of it would imply
that µ(UB) =∞, which is absurd. For background on relative randomness
via Martin-Löf tests and even simple versions of some of the methods that
are used in this paper we refer to [BLS08a, BLS08b]. In the following, trees
are thought of as growing upwards.

3. Proof of Theorem 1.3

Given a ∆0
2 set B which is not low for Martin-Löf random (and an effective

approximation of it) we need to construct a perfect Π0
1 class [T ] (where T is

a tree representing the class and [T ] the infinite paths through T ) such that
X ∈ CB (i.e. X ≤LR B) for all X ∈ [T ]. We will do this via a single LR
reduction, i.e. we will construct an oracle Σ0

1 class V with µ(V Z) < 1 for all
Z ∈ 2ω, such that UX ⊆ V B for all X ∈ [T ].

A standard way to construct a Π0
1 class, taken from [JS72], is the following.

We will define an effective sequence of 1–1 maps T [s] : 2<ω → 2<ω which
preserve the ordering and compatibility relations. These can be viewed as
uniformly computable perfect trees, and we can consider the set of infinite
paths through them:

[T [s]] = {X | ∀n∃σ (|σ| = n ∧ Tσ[s] ⊇ X � n)}
which is a Π0

1 class. We will also ensure that [T [s + 1]] ⊆ [T [s]] for each
s ∈ N and that Tσ = lims Tσ[s] exists for each σ ∈ 2<ω. This ensures that

[T ] = ∩s[T [s]]

is a perfect Π0
1 class, where T is the limit map σ → Tσ. Essentially we

construct an effective monotone sequence of perfect computable trees T [s]
converging to a perfect tree T such that [T ] is a Π0

1 class. In order to achieve
UX ⊆ V B for all X ∈ [T ] we have to make the tree T very thin, in some
sense. Indeed, since T is perfect there are continuum many paths though it
and so ∪X∈[T ]U

X is very likely to have large measure; but we need to achieve
µ(V B) < 1. This conflict is, in a way, similar to the conflict that we meet
when we wish to construct a perfect Π0

1 class which only contains paths with
‘low’ information. For example consider a direct construction of a perfect
Π0

1 class which only contains generalized low paths (see the methodology
in [BLS08b], although this was originally proved indirectly in [Cen99]) or
even one which only contains jump-traceable paths, which was constructed
in [Nie06]. More related is the case of Theorem 1.3 for B = ∅′ which was
proved in [BLS08a, BLS08b].
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Let us denote concatenation of strings by ∗. We let T [0] be the identity
map. If we could control B (an assumption which roughly corresponds
to the case where B = ∅′), at stage s0 we would choose some σ ∈ 2<ω

and enumerate UTσ∗i[s0] − UTσ [s0] into V B (by enumerating certain strings
into V B) for i = 0, 1 with big use cσ. If at some later stage s we have
µ(UTρ[s] − UTσ [s]) ≥ 2−2|σ|−2 for some ρ ⊃ σ with |ρ| < s we would redefine
Tσ∗η[s+1] = Tρ∗η[s] for all η ∈ 2<ω, enumerate cσ into B (evicting UTσ∗i[s0]−
UTσ [s0] from V B) and enumerate UTσ∗i[s+1] − UTσ [s+1] into V B for i = 0, 1
with new big use cσ; and so on. Since µ(Uβ) < 2−2 there can be at most
22|σ| changes in the approximation of Tσ (given a final approximation of Tσ− ,
where σ− denotes the predecessor of σ) and eventually Tσ will be defined
such that µ(UTρ − UTσ) < 2−2|σ|−2 for all ρ ⊃ σ.

These procedures can work simultaneously for all σ ∈ 2<ω with a typical
finite injury effect: when Tσ is redefined, Tρ is redefined for all ρ ⊇ σ and
some number cσ enters B in order to evict the intervals it contributed to
V B under the previous definition. This process makes the tree thinner and
thinner, but eventually all nodes reach a limit, thus defining a perfect tree
T . Figure 1 shows the full binary tree, and inside it one can see a thinner

· 21

· 22

· 23

· 2n

2−2

2−4

2−6

2−2n

Figure 1. Building a perfect tree which is thin, in the sense
that it is assigned a bounded amount of measure with respect
to the oracle Σ0

1 class U . The figure shows the thin tree as a
substree of the full binary tree.

subtree, which is T . The oracle Σ0
1 class U can be viewed as a computable

assignment of measure through the paths of the full binary tree. The first
column next to the tree of Figure 1 shows an upper bound on the measure
assingned to the various segments of the paths through T (the bound is
uniform for each level of the tree). The second column shows the number of
segments (which is the same as the number of paths) of each level of T . If

Cn = {Tσ | σ ∈ 2<ω ∧ |σ| ≤ n}
and An = ∪τ∈CnU τ we have Cn ⊆ Cn+1, An ⊆ An+1 and V B = ∪nAn.
By induction µ(An) <

∑n
i=0 2i · 2−(2i+2) = 2−1 and so µ(V B) ≤ 2−1. For
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a detailed presentation of this argument we refer to [BLS08a] (where it is
presented as an oracle argument) or [BLS08b] (where it is presented dynam-
ically, as described here).

Now the difficulty is that instead of being able to control B, we merely
have the information that B is not low for random. In the argument above,
V B consisted of the union of Uβ for β ∈ T because we were able to evict
irrelevant strings which entered V B by the strategy of some Tσ at a time
when Tτ , for some τ ⊆ σ had not taken its final value. In the general case we
will not be able to do this, so V B = (∪β∈TUβ)∪Junk where Junk contains
the reals which became irrelevant and were not evicted from V B. We will
refine the above ideas and use the fact that B is not low for random (instead
of explicitly enumerating into it), in order to achieve µ(V B) < 1. Let (Uj)
be a universal oracle Martin-Löf test and fix a ∆0

2 approximation (B[s]) to
B.

For each σ ∈ 2<ω we often identify Tσ with the strategy to define the value
of T on σ. Strategy Tσ has a quota parameter pσ ∈ N. It will make use of
Upσ and will construct a Σ0

1 class Eσ which ‘attempts’ to cover UBpσ . It will
also enumerate an oracle Σ0

1 class Vσ and its goals will be the following.

Goals of strategy Tσ.
• Tσ[s] reaches a limit as s→∞.
• UTσ∗i − UTσ ⊆ V B

σ for i = 0, 1.
• µ(V X

σ ) < µ(UXpσ) for all X ∈ 2ω.

Eventually we set V B = V−1∪(∪σ∈2<ωV
B
σ ), where V−1 = lims U

T∅[s] which is
a Σ0

1 class (as T∅ is approximated monotonically) and µ(V−1) < 2−2. Note
that the third clause implies that µ(V B

σ ) < 2−pσ which, by appropriate
choice of the quotas pσ, will be used to show that µ(V B) < 1. When all
Tσ strategies are put together the finite injury effect will cause some pσ to
change finitely many times.

3.1. Strategy Tσ in isolation. In this section we restrict our attention to
Tρ for ρ ⊇ σ. We define a strategy which approximates Tσ, satisfying the
goals outlined above, without any assumptions about the approximation of
Tρ, ρ ⊃ σ other than monotonicity and the preservation of ordering and
compatibility relations in T [s] restricted to arguments ⊇ σ. In particular,
we do not assume the convergence of Tρ for any ρ ⊆ σ. Order the strings
as usual, first by length and then lexicographically. We assume that pσ is a
given constant. We will construct an auxiliary oracle Σ0

1 class Fσ such that
F τσ ⊆ U τpσ and µ(F τσ ) = µ(V τ

σ ) for all τ ∈ 2<ω. In this way, every bit of
measure in Vσ will be tied up with a bit of equal measure in Upσ . For each s
we let ησ[s] be the least η ⊂ B[s] such that µ(Uηpσ−F

η
σ [s]) > 0 (equivalently,

µ(Uηpσ)− µ(V η
σ ) > 0). Also let Cσ[s] = U

ησ [s]
pσ − U (ησ [s])−

pσ .
The main idea is that we wish to define Tσ in a way such that UTρ −UTσ

is very small for all ρ ⊃ σ. As discussed above, this is possible but we also
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wish to ensure that Zi = UTσ∗i−UTσ ⊆ V B
σ for i = 0, 1 while keeping µ(V B

σ )
small. We demand UTρ−UTσ be very small (an amount corresponding to the
measure of some interval Cσ[s] which seems to be in the universal class Upσ
with use ησ[s]) and enumerate Zi into V B

σ [s] with the same use ησ[s]. If our
demand was too strong and we need to redefine Tσ, the amount enumerated
into V B

σ [s] is useless and we wish to remove it. So we put Cσ[s] into Eσ,
thus threatening to cover UBpσ . Either B will change so that the useless
amount is removed from V B

σ , or Eσ will cover a part of UBpσ . Eventually
we can argue that either V B does not contain much useless measure, or Eσ
covers a universal class relative to B. In the latter case µ(Eσ) = 1 since
B is not low for random and this will imply that for the path β carved by
the redefinitions of Tσ, Uβ has too much measure, which is a contradiction
as µ(Uβ) < 2−2. The big picture can be described as follows. The fact
that B is not low for random means that any Σ0

1 cover Eσ of the universal
class relative to B must have measure 1. While we try to find a final value
for Tσ, we enumerate a cover Eσ in such a way that each time we move
Tσ, some measure is added in Eσ and an analogous amount of measure is
added in UTσ (for the new value of Tσ, which extends the previous one).
The construction operates in such a way that if Tσ moves indefinitely, Eσ
covers the universal class relative to B. This leads to a contradiction as the
measure of it must be 1, and roughly the same amount of measure (say, a
half of the previous amount) must occur in UTσ . We now give the formal
details of strategy Tσ. In the following module and the construction, when
a parameter is not explicitly redefined it retains its previous value.

Tσ routine at stage s+ 1.
(1) If for some ρ ⊃ σ of length s + 1 we have µ(UTρ[s] − UTσ [s]) ≥

µ(Cσ[s])/2, pick the least such and define Tσ∗τ [s + 1] = Tρ∗τ [s] for
all τ ∈ 2<ω. Also enumerate Cσ[s] into Eσ, enumerate Uησ [s]

pσ into
F
ησ [s]
σ and also some dummy clopen set into V ησ [s]

σ in order to make
µ(F ησ [s]

σ ) = µ(V ησ [s]
σ ).

(2) Otherwise enumerate Mi = (UTσ∗i[s] − UTσ [s])− V ησ [s]
σ [s] into V ησ [s]

σ

for i = 0, 1, and enumerate a clopen subset of Cσ[s] − F ησ [s]
σ [s] of

measure µ(M0 ∪M1) into F ησ [s]
σ .

Verification of Tσ routine. We verify that the Tσ routine satisfies its
goals of strategy Tσ as mentioned above. By induction on the stages it
follows that µ(V τ

σ [s]) = µ(F τσ [s]) for all s and the second clause of the
Tσ routine is well defined. Indeed, supposing this for stages ≤ s, since
µ(V τ

σ [s]) = µ(F τσ [s]), if the second clause was applied at s + 1 we must
have µ(M0 ∪M1) < µ(Cσ[s] − F ησ [s]

σ [s]) because otherwise the first clause
would apply. On the other hand if µ(F τσ [s]) increases at s + 1, it is clear
that µ(V τ

σ [s]) will increase by the same amount, and the induction step is
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complete. It is also clear from the Tσ routine that F τσ [s] ⊆ U τpσ for all s ∈ N
and τ ∈ 2<ω. Hence µ(V X

σ ) ≤ µ(UXpσ) for all X ∈ 2ω.
Second, we show that Tσ will reach a final value. Suppose for a contra-

diction that lims Tσ[s] = X, where X is an infinite string. Then Cσ[s] does
not reach a limit, as in that case µ(UX) = ∞ by the first step of the Tσ
routine (each time Tσ[s] changes, µ(UTσ) increases by µ(Cσ[s])). We claim
that UBpσ ⊆ Eσ. Indeed, if this was not the case consider the least τ ⊂ B
such that U τpσ 6⊆ Eσ. We must have U τpσ − F

τ
σ 6= ∅ because the only place in

the Tσ routine where all of U τpσ is enumerated into F τσ is the first clause, but
in that case U τpσ is enumerated in Eσ. When B � |τ | settles, the value of ησ[s]
would settle on τ and so Cσ[s] would reach a limit, and this is impossible by
the discussion above. Hence UBpσ ⊆ Eσ and since MLR 6⊆ MLRB (by [KH07])
we have µ(Eσ) = 1. But by the Tσ routine, every time µ(Eσ) increases by
some amount r ∈ Q, UTσ increases by at least r/2. So µ(UTσ) ≥ 1/2 which
contradicts the choice of U .

Next we show that ησ[s] reaches a limit. If this did not happen, by the
fact that B[s] converges to B we have that U τpσ = F τσ for all τ ⊂ B. Since
Upσ is universal there are infinitely many τ ⊂ B such that U τpσ − U

τ−
pσ 6= ∅.

Again by the convergence of B[s] to B we have that for each such τ there
is some stage s such that ησ[s] = τ . So

(3.1) ∀n ∃s [ησ[s] ⊂ B ∧ |ησ[s]| > n].

Choose a stage s0 such that Tσ[s] = Tσ[s0] for all s ≥ s0, and choose m ∈ N,
τ0 ⊃ σ such that µ(UTτ0 [s0] − UTσ [s0]) > 2−m. Now by Lemma 2.1 choose
some n ∈ N such that µ(U τ − U τ−) < 2−m for all τ ⊂ B of length > n. By
(3.1) there is some s > max{s0, |τ0|} such that ησ[s] ⊂ B, |ησ[s]| > n and
since µ(Cσ[s]) < 2−m and |τ0| < s the value of Tσ would change at s > s0
by clause (2) of the Tσ routine, a contradiction.

Finally we show that for the final values of Tσ, Tσ∗i we have UTσ∗i−UTσ ⊆
V B
σ (the values Tσ∗i, i = 0, 1 may be infinite limits as the Tσ routine does

not assume that Tσ∗i[s] converges after finitely many stages). Let t0 be the
least stage such that ησ[t] = ησ[t0] for all t ≥ t0. Then Cσ[t] = Cσ[t0] for all
t ≥ t0 and UTσ∗i −UTσ will keep on being enumerated into V ησ [t0]

σ by clause
2 of the Tσ routine. But ησ[t0] ⊂ B, so UTσ∗i − UTσ ⊆ V B

σ .

3.2. All strategies together. The Tσ routines can work together with a
finite injury effect. We let pσ,j = 2|σ|+j+4 and nσ[s] is the number of times
that Tσ has been injured by stage s. Also, the routines will use Eσ,j , Fσ,j ,
Vσ,j , where j = nσ[s], at stage s+ 1 (i.e. they change parameters each time
they are injured). So we also need to redefine ησ[s] to be the least η ⊂ B[s]
such that µ(Uηpσ,j − F

η
σ,j [s]) > 0 (equivalently, µ(Uηpσ,j ) − µ(V η

σ,j) > 0) and

also let Cσ[s] = U
ησ [s]
pσ,j − U

(ησ [s])−
pσ,j , where j = nσ[s]. Eventually we define

Vσ = ∪sVσ,js , where js = nσ[s] (so that they are Σ0
1).
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General Tσ routine at stage s+ 1. Let j = nσ[s].

(1) If there is some τ ⊃ σ such that |τ | = s+ 1 and µ(UTτ [s]−UTσ [s]) ≥
µ(Cσ[s])/2, define Tσ∗ρ[s + 1] = Tτ∗ρ[s] for all ρ ∈ 2<ω. Also enu-
merate Cσ[s] into Eσ,j , enumerate Uησ [s]

pσ,j into F
ησ [s]
σ,j and also some

dummy clopen set into V ησ [s]
σ,j in order to make µ(F ησ [s]

σ,j ) = µ(V ησ [s]
σ,j ).

(2) Otherwise, enumerate Mi = (UTσ∗i[s] −UTσ [s])− V ησ [s]
σ,j [s] into V ησ [s]

σ,j

for i = 0, 1, and enumerate a clopen subset of Cσ[s] − F ησ [s]
σ,j [s] of

measure µ(M0 ∪M1) into F ησ [s]
σ,j .

We say that Tσ requires attention at stage s + 1 if one of the following
holds:

(i) There is some τ ⊃ σ of length s+ 1 such that µ(UTτ [s] − UTσ [s]) ≥
µ(Cσ[s])/2.

(ii) Tσ∗i has changed value for i = 0 or i = 1 since the last stage where
Tσ received attention.

Construction. At stage s+1 let σ be the least string such that Tσ requires
attention. Run general routine Tσ and if clause 1 of the routine was applied
(i.e. if it required attention through clause (i)) for all τ ⊃ σ say that Tτ is
injured.

Verification. By inductively applying the verification of the Tσ routine of
subsection 3.1 we have that Tσ converges for all σ ∈ 2<ω. So T is a perfect
tree, and [T ] is a Π0

1 class since [T ] = ∩s[T [s]] and [T [n+ 1]] ⊆ [T [n]] for all
n ∈ N. It remains to show that µ(V B) < 1 and that Uβ ⊆ V B for all β ∈ [T ].
By inductively applying the verification of the Tσ routine of subsection 3.1
we have that µ(V ρ

σ,js
) ≤ µ(Uρpσ,js ) for all s and σ, ρ ∈ 2<ω, where js = nσ[s].

If Jσ = {nσ[s] | s ∈ N} then

µ(V ρ
σ ) ≤

∑
j∈Jσ

µ(Uρ2|σ|+j+4) ≤
∑
j∈Jσ

2−2|σ|−j−4 ≤ 2−2|σ|−3.

Hence µ(V ρ) ≤ 2−2 +
∑

σ∈2<ω 2−2|σ|−3 ≤ 2−1. In particular, µ(V B) < 1.
Finally by inductively applying the verification of the Tσ routine we get
that UTσ∗i −UTσ ⊂ V B

σ,nσ for all σ ∈ 2<ω, i = 0, 1, where Tσ∗i = lims Tσ∗i[s],
Tσ = lims Tσ∗i[s] and nσ = lims nσ[s]. Clearly we also have UT∅ ⊆ V−1. So
Uβ ⊆ V B for all β ∈ [T ], and this completes the proof. We wish to conclude
with a question.

Question. Can the Π0
1 class [T ] of Theorem 1.3 be made such that it con-

tains no low for Martin-Löf random paths?



RELATIVE RANDOMNESS AND CARDINALITY 11

References
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[Nie08] André Nies. Eliminating concepts. In Computational prospects of infinity. Part
II. Presented talks, volume 15 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ.
Singap., pages 225–247. World Sci. Publ., Hackensack, NJ, 2008.
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