PA degrees, Π^0_1 classes and relative randomness

George Barmpalias

Victoria University of Wellington

July 7, 2008
A number of results indicate that the complete randoms are very different to the incomplete randoms. In particular, that incomplete randoms have little information content. The theory of PA degrees was developed in parallel to the theory of random degrees in the early papers of Kučera. A degree is PA if it computes a path through every nonempty Π^0_1 class.
A number of results indicate that the complete randoms are very different to the incomplete randoms.

In particular, that incomplete randoms have little information content.

The theory of PA degrees was developed in parallel to the theory of random degrees in the early papers of Kučera.

A degree is PA if it computes a path through every nonempty Π^0_1 class.
Random degrees

- A number of results indicate that the complete randoms are very different to the incomplete randoms.
- In particular, that incomplete randoms have little information content.
- The theory of PA degrees was developed in parallel to the theory of random degrees in the early papers of Kučera.
- A degree is PA if it computes a path through every nonempty Π^0_1 class.
Random degrees

- A number of results indicate that the complete randoms are very different to the incomplete randoms.
- In particular, that incomplete randoms have little information content.
- The theory of PA degrees was developed in parallel to the theory of random degrees in the early papers of Kučera.
- A degree is PA if it computes a path through every nonempty Π^0_1 class.
Random degrees

- A number of results indicate that the complete randoms are very different to the incomplete randoms.
- In particular, that incomplete randoms have little information content.
- The theory of PA degrees was developed in parallel to the theory of random degrees in the early papers of Kučera.
- A degree is PA if it computes a path through every nonempty Π^0_1 class.
A dichotomy in the class of Martin-Löf randoms

Theorem (Stephan)

No incomplete random degree can be PA.

This shows that incomplete randoms have little information content.
A dichotomy in the class of Martin-L of randoms

Theorem (Stephan)

No incomplete random degree can be PA.

This shows that incomplete randoms have little information content.
Theorem (Barmpalias and Lewis)

Every PA degree is the join of two random degrees.
Corollary

Incomplete PA degrees give examples of pairs of random degrees whose join is not random.
Let C be of PA degree. We wish to find randoms A, B such that $C \equiv_T A \oplus B$.

- We would like to start with a Π^0_1 class P of randoms and find A, B inside P,
- using the fact that C computes a member of every nonempty Π^0_1 class.
- We would like to find a perfect tree in P, which we can use to code C into the join of two of its paths.
Proof idea

Let C be of PA degree. We wish to find randoms A, B such that $C \equiv_T A \oplus B$.

- We would like to start with a Π^0_1 class P of randoms and find A, B inside P,
- using the fact that C computes a member of every nonempty Π^0_1 class.
- We would like to find a perfect tree in P, which we can use to code C into the join of two of its paths.
Proof idea

Let C be of PA degree. We wish to find randoms A, B such that $C \equiv_T A \oplus B$.

- We would like to start with a Π^0_1 class P of randoms and find A, B inside P,
- using the fact that C computes a member of every nonempty Π^0_1 class.
- We would like to find a perfect tree in P, which we can use to code C into the join of two of its paths.
Let C be of PA degree. We wish to find randoms A, B such that $C \equiv_T A \oplus B$.

- We would like to start with a Π^0_1 class P of randoms and find A, B inside P,
- using the fact that C computes a member of every nonempty Π^0_1 class.
- We would like to find a perfect tree in P, which we can use to code C into the join of two of its paths.
If T is a partial function from $2^{<\omega}$ to $2^{<\omega}$ we say that T is a tree if for every $\sigma \in 2^{<\omega}$ and $i \in \{0, 1\}$ such that $T(\sigma \ast i) \downarrow$:

- $T(\sigma) \downarrow \subset T(\sigma \ast i)$;
- $T(\sigma \ast (1 - i)) \downarrow | T(\sigma \ast i)$.

A tree T is perfect if $T(\sigma) \downarrow$ for all σ. A finite tree T of level n is the restriction of a tree (as a map) to strings of length n.
Trees

If T is a partial function from $2^{<\omega}$ to $2^{<\omega}$ we say that T is a tree if for every $\sigma \in 2^{<\omega}$ and $i \in \{0, 1\}$ such that $T(\sigma * i) \downarrow$:

- $T(\sigma) \downarrow \subset T(\sigma * i)$;
- $T(\sigma * (1 - i)) \downarrow | T(\sigma * i)$.

A tree T is perfect if $T(\sigma) \downarrow$ for all σ. A finite tree T of level n is the restriction of a tree (as a map) to strings of length n.
Trees in P

- There are perfect trees in P.
- By a theorem of Figueira, Miller, Nies for every $X \in P$ there is a sequence of positions in X such that for any alternation of the digits of X on these positions, the resulting real is still in P.
Trees in P

- There are perfect trees in P.
- By a theorem of Figueira, Miller, Nies for every $X \in P$ there is a sequence of positions in X such that for any alternation of the digits of X on these positions, the resulting real is still in P.
Trees in P

- There are perfect trees in P.
- By a theorem of Figueira, Miller, Nies for every $X \in P$ there is a sequence of positions in X such that for any alternation of the digits of X on these positions, the resulting real is still in P.
Indifferent sets and trees in P
Indifferent sets and trees in P
Indifferent sets and trees in P
Trees in P

- We could use this tree to define A, B in P such that $A \oplus B \geq_T C$:
- Get A from X by making the nth special position equal to $C(n)$
- Get B from X by making the nth special position equal to $1 - C(n)$
Trees in P

- We could use this tree to define A, B in P such that $A \oplus B \geq_T C$:
 - Get A from X by making the nth special position equal to $C(n)$
 - Get B from X by making the nth special position equal to $1 - C(n)$
Trees in P

- We could use this tree to define A, B in P such that $A \oplus B \geq_T C$:
- Get A from X by making the nth special position equal to $C(n)$
- Get B from X by making the nth special position equal to $1 - C(n)$
Trees in P

- We could use this tree to define A, B in P such that $A \oplus B \geq_T C$:
- Get A from X by making the nth special position equal to $C(n)$
- Get B from X by making the nth special position equal to $1 - C(n)$
The plan...

- Then we would only need to find such a homogenous tree which is computable from C.
- The set of homogenous trees of this type is a closed set in the space of perfect trees with the topology generated by the finite trees (as basic open sets).
The plan...

- Then we would only need to find such a homogenous tree which is computable from C.
- The set of homogenous trees of this type is a closed set in the space of perfect trees with the topology generated by the finite trees (as basic open sets).
The plan.

- Then we would only need to find such a homogenous tree which is computable from C.
- The set of homogenous trees of this type is a closed set in the space of perfect trees with the topology generated by the finite trees (as basic open sets).
However...

- However the class of trees of this type does not form a Π^0_1 class!
- In fact, the topological space T of perfect trees (or even trees of this type) is not compact, hence not homeomorphic to the Cantor space.
- ...let alone effectively homeomorphic...
However...

- However the class of trees of this type does not form a Π^0_1 class!
- In fact, the topological space \mathcal{T} of perfect trees (or even trees of this type) is not compact, hence not homeomorphic to the Cantor space.
- ...let alone effectively homeomorphic ...
However...

- However the class of trees of this type does not form a Π^0_1 class!
- In fact, the topological space \mathcal{T} of perfect trees (or even trees of this type) is not compact, hence not homeomorphic to the Cantor space.
- ...let alone effectively homeomorphic ...
However...

• However the class of trees of this type does not form a Π_1^0 class!

• In fact, the topological space \mathcal{T} of perfect trees (or even trees of this type) is not compact, hence not homeomorphic to the Cantor space.

• ...let alone effectively homeomorphic ...
A way out . . .

- We work inside a compact subspace of \mathcal{T}.
- Let $f : \mathbb{N} \to \mathbb{N}$ be an increasing function.
- Function f defines a partition on any given infinite string A.
- Let $(\sigma_A(i))$ be the unique sequence of strings such that $|\sigma_A(i)| = f(i)$ and

$$A = \sigma_A(0) \ast \sigma_A(1) \ast \ldots$$ (1)

- Say that A, B are *piecewise f-different from level n* if $\sigma_A(i) \neq \sigma_B(i)$ for all $i \geq n$.
A way out . . .

- We work inside a compact subspace of \mathcal{T}.
- Let $f : \mathbb{N} \to \mathbb{N}$ be an increasing function.
- Function f defines a partition on any given infinite string A.
- Let $(\sigma_A(i))$ be the unique sequence of strings such that $|\sigma_A(i)| = f(i)$ and

\[A = \sigma_A(0) \ast \sigma_A(1) \ast \ldots \tag{1} \]

- Say that A, B are piecewise f-different from level n if $\sigma_A(i) \neq \sigma_B(i)$ for all $i \geq n$.
A way out . . .

- We work inside a compact subspace of \mathcal{T}.
- Let $f : \mathbb{N} \to \mathbb{N}$ be an increasing function
 - Function f defines a partition on any given infinite string A.
 - Let $(\sigma_A(i))$ be the unique sequence of strings such that $|\sigma_A(i)| = f(i)$ and
 \[
 A = \sigma_A(0) \ast \sigma_A(1) \ast \ldots \tag{1}
 \]
- Say that A, B are piecewise f-different from level n if $\sigma_A(i) \neq \sigma_B(i)$ for all $i \geq n$.
A way out . . .

- We work inside a compact subspace of \(\mathcal{T} \).
- Let \(f : \mathbb{N} \to \mathbb{N} \) be an increasing function.
- Function \(f \) defines a partition on any given infinite string \(A \).
- Let \((\sigma_A(i)) \) be the unique sequence of strings such that \(|\sigma_A(i)| = f(i) \) and

\[
A = \sigma_A(0) * \sigma_A(1) * \ldots
\]

(1)

- Say that \(A, B \) are piecewise \(f \)-different from level \(n \) if \(\sigma_A(i) \neq \sigma_B(i) \) for all \(i \geq n \).
A way out . . .

- We work inside a compact subspace of \mathcal{T}.
- Let $f : \mathbb{N} \to \mathbb{N}$ be an increasing function
- Function f defines a partition on any given infinite string A.
- Let $(\sigma_A(i))$ be the unique sequence of strings such that $|\sigma_A(i)| = f(i)$ and

$$A = \sigma_A(0) \ast \sigma_A(1) \ast \ldots \quad (1)$$

- Say that A, B are piecewise f-different from level n if $\sigma_A(i) \neq \sigma_B(i)$ for all $i \geq n$.
A way out . . .

- We work inside a compact subspace of \mathcal{T}.
- Let $f : \mathbb{N} \to \mathbb{N}$ be an increasing function.
- Function f defines a partition on any given infinite string A.
- Let $(\sigma_A(i))$ be the unique sequence of strings such that $|\sigma_A(i)| = f(i)$ and
 \[A = \sigma_A(0) \ast \sigma_A(1) \ast \ldots \] (1)
- Say that A, B are piecewise f-different from level n if $\sigma_A(i) \neq \sigma_B(i)$ for all $i \geq n$.
The subspace

• For any such pair A, B define the tree $T_{AB}^{f,n}$ as follows:

$$T_{AB}^{f,n}(\emptyset) = A \upharpoonright f(n)$$
$$T_{AB}^{f,n}(\tau \ast 0) = T_{AB}^{f,n}(\tau) \ast \min\{\sigma_A(|\tau|), \sigma_B(|\tau|)\}$$
$$T_{AB}^{f,n}(\tau \ast 1) = T_{AB}^{f,n}(\tau) \ast \max\{\sigma_A(|\tau|), \sigma_B(|\tau|)\}$$

• Then consider the subspace

$$\mathcal{T}^{f,n} = \{ T_{AB}^{f,n} \mid A, B \text{ are piecewise } f\text{-different from level } n \}$$
The subspace

- For any such pair A, B define the tree $T_{AB}^{f,n}$ as follows:

 \[
 T_{AB}^{f,n}(\emptyset) = A \upharpoonright f(n) \\
 T_{AB}^{f,n}(\tau \ast 0) = T_{AB}^{f,n}(\tau) \ast \min\{\sigma_A(|\tau|), \sigma_B(|\tau|)\} \\
 T_{AB}^{f,n}(\tau \ast 1) = T_{AB}^{f,n}(\tau) \ast \max\{\sigma_A(|\tau|), \sigma_B(|\tau|)\}
 \]

- Then consider the subspace

 \[
 T^{f,n} = \{ T_{AB}^{f,n} \mid A, B \text{ are piecewise } f\text{-different from level } n \}\]
The subspace

• For any such pair A, B define the tree $T_{AB}^{f,n}$ as follows:

\[
T_{AB}^{f,n}(\emptyset) = A \upharpoonright f(n)
\]
\[
T_{AB}^{f,n}(\tau \ast 0) = T_{AB}^{f,n}(\tau) \ast \min\{\sigma_A(|\tau|), \sigma_B(|\tau|)\}
\]
\[
T_{AB}^{f,n}(\tau \ast 1) = T_{AB}^{f,n}(\tau) \ast \max\{\sigma_A(|\tau|), \sigma_B(|\tau|)\}
\]

• Then consider the subspace

\[
\mathcal{T}^{f,n} = \{ T_{AB}^{f,n} \mid A, B \text{ are piecewise } f\text{-different from level } n \}\]
The subspace

- For any such pair A, B define the tree $T_{AB}^{f,n}$ as follows:

\[
T_{AB}^{f,n}(\emptyset) = A \upharpoonright f(n)
\]

\[
T_{AB}^{f,n}(\tau \ast 0) = T_{AB}^{f,n}(\tau) \ast \min\{\sigma_A(|\tau|), \sigma_B(|\tau|)\}
\]

\[
T_{AB}^{f,n}(\tau \ast 1) = T_{AB}^{f,n}(\tau) \ast \max\{\sigma_A(|\tau|), \sigma_B(|\tau|)\}
\]

- Then consider the subspace

\[
\mathcal{I}^{f,n} = \{ T_{AB}^{f,n} \mid A, B \text{ are piecewise } f\text{-different from level } n\}\]
Trees from pairs of reals
Trees from pairs of reals
Trees from pairs of reals
The subspace

- $T^{f,n}$ is compact and f-effectively homeomorphic to the Cantor space.
- If f is recursive, the trees in $T^{f,n}$ which are contained in the Π^0_1 class P is itself a Π^0_1 class!
- The set

 $$\{ A \oplus B \mid A, B \text{ are piecewise } f\text{-different from level } n \text{ and } [T_{AB}^{f,n}] \subseteq P \}$$

 is Π^0_1.
The subspace

- $\mathcal{T}^{f,n}$ is compact and f-effectively homeomorphic to the Cantor space.
- If f is recursive, the trees in $\mathcal{T}^{f,n}$ which are contained in the Π^0_1 class P is itself a Π^0_1 class!
- The set

 \[\{ A \oplus B \mid A, B \text{ are piecewise } f\text{-different from level } n \text{ and } [T_{AB}^{f,n}] \subseteq P \} \]

 is Π^0_1.
The subspace

- $\mathcal{T}^{f,n}$ is compact and f-effectively homeomorphic to the Cantor space.
- If f is recursive, the trees in $\mathcal{T}^{f,n}$ which are contained in the Π^0_1 class P is itself a Π^0_1 class!
- The set

\[\{A \oplus B \mid A, B \text{ are piecewise } f\text{-different from level } n \text{ and } [T_{AB}^{f,n}] \subseteq P \} \]

is Π^0_1.
The subspace

- $T^{f,n}$ is compact and f-effectively homeomorphic to the Cantor space.
- If f is recursive, the trees in $T^{f,n}$ which are contained in the Π^0_1 class P is itself a Π^0_1 class!
- The set
 $$\{ A \oplus B \mid A, B \text{ are piecewise } f\text{-different from level } n \text{ and } [T_{AB}^{f,n}] \subseteq P \}$$
 is Π^0_1.
We need to show

- It remains to show that there is a recursive function f and some $n \in \mathbb{N}$ such that
 $$\{ A \oplus B \mid A, B \text{ are piecewise } f\text{-different from level } n \text{ and } [T_{AB}^{f,n}] \subseteq P \}$$
is nonempty.
- we do it by a measure counting argument, and the fact that P has positive measure.
We need to show

- It remains to show that there is a recursive function f and some $n \in \mathbb{N}$ such that
 \[\{ A \oplus B \mid A, B \text{ are piecewise } f\text{-different from level } n \text{ and } [T_{AB}^{f,n}] \subseteq P \} \]
 is nonempty.

- we do it by a measure counting argument, and the fact that P has positive measure.
We need to show

• It remains to show that there is a recursive function f and some $n \in \mathbb{N}$ such that

\[\{ A \oplus B \mid A, B \text{ are piecewise } f\text{-different from level } n \text{ and } [T_{AB}^{f,n}] \subseteq P \} \]

is nonempty.

• we do it by a measure counting argument, and the fact that P has positive measure.
Theorem

There exists a computable function f such that if P is a Π^0_1 class and $X \in P$ is sufficiently random then for some $n \in \mathbb{N}$ and some Y piecewise f-different to X from level n we have $[T_{XY}^{f,n}] \subseteq P$.
Sketch of proof

- X can be f-switched after level n inside P if there is a Y piecewise f-different to X such that $[T_{XY}^f] \subseteq P$
- Let D_n be the reals that cannot be f-switched from level n inside P.
- $\hat{D}_n = D_n \cap P$
- We show by induction that $\mu(\hat{D}_n) \leq O(2^{-n})$
- ... for a recursively defined f

\[
\begin{align*}
 f(0) &= 1 \\
 f(n+1) &= 2f(n) + n + 2
\end{align*}
\]
Sketch of proof

- X can be \textit{f-switched after level n inside P} if there is a Y piecewise f-different to X such that $[T^f_{XY}] \subseteq P$
- Let D_n be the reals that cannot be f-switched from level n inside P.
- $\hat{D}_n = D_n \cap P$
- We show by induction that $\mu(\hat{D}_n) \leq O(2^{-n})$
- \ldots for a recursively defined f

\[
\begin{align*}
 f(0) &= 1 \\
 f(n+1) &= 2f(n) + n + 2
\end{align*}
\]
Sketch of proof

• X can be \textit{f-switched after level n inside P} if there is a Y piecewise f-different to X such that $[T_{XY}^{f,n}] \subseteq P$

• Let D_n be the reals that cannot be f-switched from level n inside P.

• $\hat{D}_n = D_n \cap P$

• We show by induction that $\mu(\hat{D}_n) \leq O(2^{-n})$

• \ldots for a recursively defined f

•

\begin{align*}
 f(0) &= 1 \\
 f(n+1) &= 2f(n) + n + 2
\end{align*}
Sketch of proof

• X can be \textit{f-switched after level n inside P} if there is a Y piecewise f-different to X such that $[T_{XY}^f, n] \subseteq P$

• Let D_n be the reals that cannot be f-switched from level n inside P.

• $\hat{D}_n = D_n \cap P$

• We show by induction that $\mu(\hat{D}_n) \leq O(2^{-n})$

• ... for a recursively defined f

\[
\begin{align*}
 f(0) &= 1 \\
 f(n + 1) &= 2f(n) + n + 2
\end{align*}
\]
Sketch of proof

• X can be \textit{f-switched after level n inside P} if there is a Y piecewise f-different to X such that $[T_{XY}^{f,n}] \subseteq P$

• Let D_n be the reals that cannot be f-switched from level n inside P.

• $\hat{D}_n = D_n \cap P$

• We show by induction that $\mu(\hat{D}_n) \leq O(2^{-n})$

• \ldots for a recursively defined f

$$
\begin{align*}
 f(0) &= 1 \\
 f(n+1) &= 2f(n) + n + 2
\end{align*}
$$
Sketch of proof

- X can be \textit{f-switched after level n inside P} if there is a Y piecewise f-different to X such that $[T_{X,Y}^{f,n}] \subseteq P$
- Let D_n be the reals that cannot be f-switched from level n inside P.
- $\hat{D}_n = D_n \cap P$
- We show by induction that $\mu(\hat{D}_n) \leq O(2^{-n})$
- \ldots for a recursively defined f

\[
\begin{align*}
 f(0) &= 1 \\
 f(n+1) &= 2f(n) + n + 2
\end{align*}
\]
Sketch of proof

- X can be *f-switched after level n inside P* if there is a Y piecewise f-different to X such that $[T^{f,n}_{XY}] \subseteq P$
- Let D_n be the reals that cannot be f-switched from level n inside P.
- $\hat{D}_n = D_n \cap P$
- We show by induction that $\mu(\hat{D}_n) \leq O(2^{-n})$
- ... for a recursively defined f
-
 \[
 \begin{align*}
 f(0) &= 1 \\
 f(n + 1) &= 2f(n) + n + 2
 \end{align*}
\]
More details

• We say that A can be \textit{f-switched at $[n, m]$ inside P} if it belongs to P and there exists B such that $\sigma_A(i) \neq \sigma_B(i)$ for all $i \in [n, m]$ and for every sequence $(x_i) \in \{A, B\}^\omega$ with $x_i = A$ for $i \notin [n, m]$, the real $\sigma_{x_0}(0) \ast \sigma_{x_1}(1) \ast \ldots$ is in P.

• A real can be \textit{f-switched at $[n, m]$ for all $m \in \mathbb{N}$ inside P} iff it can be \textit{f-switched from level n inside P}.

• Let $D_{n,m}$ be the set of reals which cannot be \textit{f-switched at $[n, m]$ inside P}.
More details

- We say that A can be \textit{f-switched at $[n, m]$ inside P} if it belongs to P and there exists B such that $\sigma_A(i) \neq \sigma_B(i)$ for all $i \in [n, m]$ and for every sequence $(x_i) \in \{A, B\}\omega$ with $x_i = A$ for $i \notin [n, m]$, the real $\sigma_{x_0}(0) \ast \sigma_{x_1}(1) \ast \ldots$ is in P.

- A real can be \textit{f-switched at $[n, m]$ for all $m \in \mathbb{N}$ inside P} iff it can be \textit{f-switched from level n inside P}.

- Let $D_{n,m}$ be the set of reals which cannot be \textit{f-switched at $[n, m]$ inside P}.
More details

- We say that A can be \textit{f-switched at $[n, m]$ inside P} if it belongs to P and there exists B such that $\sigma_A(i) \neq \sigma_B(i)$ for all $i \in [n, m]$ and for every sequence $(x_i) \in \{A, B\}^\omega$ with $x_i = A$ for $i \notin [n, m]$, the real $\sigma_{x_0}(0) * \sigma_{x_1}(1) * \ldots$ is in P.

- A real can be f-switched at $[n, m]$ for all $m \in \mathbb{N}$ inside P iff it can be f-switched from level n inside P.

- Let $D_{n,m}$ be the set of reals which cannot be f-switched at $[n, m]$ inside P.
• We say that A can be \textit{f-switched at $[n, m]$ inside P} if it belongs to P and there exists B such that $\sigma_A(i) \neq \sigma_B(i)$ for all $i \in [n, m]$ and for every sequence $(x_i) \in \{A, B\}^\omega$ with $x_i = A$ for $i \notin [n, m]$, the real $\sigma_{x_0}(0) \ast \sigma_{x_1}(1) \ast \ldots$ is in P.

• A real can be \textit{f-switched at $[n, m]$ for all $m \in \mathbb{N}$ inside P} iff it can be \textit{f-switched from level n inside P}.

• Let $D_{n,m}$ be the set of reals which cannot be \textit{f-switched at $[n, m]$ inside P}.
More details

• Hence $D_n = \bigcup_m D_{n,m}$.
• the sequence $D_{n,m}$ is uniformly Σ^0_1 for recursive f.
• $\hat{D}_{n,m} = P \cap D_{n,m}$.
• It suffices to construct f such that

$$
\mu(\hat{D}_{n,n}) \leq 2^{-n-1}
$$

$$
\mu(\hat{D}_{n,m+1} - \hat{D}_{n,m}) \leq 2^{-n-m-2}
$$

for all n and all $m \geq n$.
More details

- Hence $D_n = \bigcup_m D_{n,m}$.
- the sequence $D_{n,m}$ is uniformly Σ^0_1 for recursive f.
- $\hat{D}_{n,m} = P \cap D_{n,m}$.
- It suffices to construct f such that
 \[
 \mu(\hat{D}_{n,n}) \leq 2^{-n-1}
 \]
 \[
 \mu(\hat{D}_{n,m+1} - \hat{D}_{n,m}) \leq 2^{-n-m-2}
 \]
 for all n and all $m \geq n$.
More details

• Hence $D_n = \bigcup_m D_{n,m}$.
• the sequence $D_{n,m}$ is uniformly Σ^0_1 for recursive f.
• $\hat{D}_{n,m} = P \cap D_{n,m}$.
• It suffices to construct f such that

$$
\mu(\hat{D}_{n,n}) \leq 2^{-n-1} \quad \mu(\hat{D}_{n,m+1} - \hat{D}_{n,m}) \leq 2^{-n-m-2}
$$

for all n and all $m \geq n$.
More details

- Hence $D_n = \bigcup_m D_{n,m}$.
- The sequence $D_{n,m}$ is uniformly Σ^0_1 for recursive f.
- $\hat{D}_{n,m} = P \cap D_{n,m}$.
- It suffices to construct f such that
 \[
 \mu(\hat{D}_{n,n}) \leq 2^{-n-1},
 \mu(\hat{D}_{n,m+1} - \hat{D}_{n,m}) \leq 2^{-n-m-2}
 \]
 for all n and all $m \geq n$.
More details

- Hence $D_n = \bigcup_m D_{n,m}$.
- the sequence $D_{n,m}$ is uniformly Σ^0_1 for recursive f.
- $\hat{D}_{n,m} = P \cap D_{n,m}$.
- It suffices to construct f such that
 \[
 \mu(\hat{D}_{n,n}) \leq 2^{-n-1}
 \]
 \[
 \mu(\hat{D}_{n,m+1} - \hat{D}_{n,m}) \leq 2^{-n-m-2}
 \]
 for all n and all $m \geq n$.

More details

- Then $\bigcap_i \hat{D}_i$ is Π^0_2 and is null.
- So for a sufficiently random $A \in P$ there is B and $n \in \mathbb{N}$ such that $[T_{A,B}^{f,n}] \subseteq P$.
More details

- Then $\bigcap_i \hat{D}_i$ is Π^0_2 and is null.
- So for a sufficiently random $A \in P$ there is B and $n \in \mathbb{N}$ such that $[T_{A,B}^{f,n}] \subseteq P$.
More details

- Then $\cap_i \hat{D}_i$ is Π^0_2 and is null.
- So for a sufficiently random $A \in P$ there is B and $n \in \mathbb{N}$ such that $[T_{A,B}^{f,n}] \subseteq P$.

We show that

\[
\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1)-f(n)};
\]

\[
\mu(\hat{D}_{n,m+1} - \hat{D}_{n,m}) \leq 2^{f(m)} \cdot 2^{f(m)-f(n-1)} \cdot 2^{-f(m+1)}
\]

for an arbitrary increasing \(f \), and then choose a recursive \(f \) appropriately.
Arbitrary f

We show that

$$
\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1)-f(n)};
$$

$$
\mu(\hat{D}_{n,m+1} - \hat{D}_{n,m}) \leq 2^{f(m)} \cdot 2^{f(m)-f(n-1)} \cdot 2^{-f(m+1)}
$$

for an arbitrary increasing f, and then choose a recursive f appropriately.
Example: $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)-f(n)}$

- Fix σ of length $f(n-1)$ and for each τ of length $f(n) - f(n-1)$ let $M_{\sigma\tau}(n,n)$ be the set of reals B such that $\sigma \ast \tau \ast B \in D_{n,n}$.
- $M_{\sigma\tau}(n,n) \cap M_{\sigma\rho}(n,n) = \emptyset$ for any strings $\tau \neq \rho$ of length $f(n) - f(n-1)$.
- Hence $\sum_{\tau \in 2^{f(n)-f(n-1)}} \mu(M_{\sigma\tau}(n,n)) \leq 1$...
- ... so $\mu(\hat{D}_{n,n} \cap [\sigma]) \leq 2^{-f(n)}$...
- ... and $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1)-f(n)}$.
Example: $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)-f(n)}$

- Fix σ of length $f(n - 1)$ and for each τ of length $f(n) - f(n - 1)$ let $M_{\sigma\tau}(n, n)$ be the set of reals B such that $\sigma \ast \tau \ast B \in D_{n,n}$.
- $M_{\sigma\tau}(n, n) \cap M_{\sigma\rho}(n, n) = \emptyset$ for any strings $\tau \neq \rho$ of length $f(n) - f(n - 1)$.
- Hence $\sum_{\tau \in 2^{f(n) - f(n-1)}} \mu(M_{\sigma\tau}(n, n)) \leq 1$...
- ... so $\mu(\hat{D}_{n,n} \cap [\sigma]) \leq 2^{-f(n)}$...
- ... and $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1)-f(n)}$.
Example: $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1) - f(n)}$

- Fix σ of length $f(n - 1)$ and for each τ of length $f(n) - f(n - 1)$ let $M_{\sigma\tau}(n, n)$ be the set of reals B such that $\sigma * \tau * B \in D_{n,n}$.
- $M_{\sigma\tau}(n, n) \cap M_{\sigma\rho}(n, n) = \emptyset$ for any strings $\tau \neq \rho$ of length $f(n) - f(n - 1)$.
- Hence $\sum_{\tau \in 2^{f(n)} - f(n-1)} \mu(M_{\sigma\tau}(n, n)) \leq 1$...
- ... so $\mu(\hat{D}_{n,n} \cap [\sigma]) \leq 2^{-f(n)}$...
- ... and $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1) - f(n)}$.
Example: $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1) - f(n)}$

- Fix σ of length $f(n - 1)$ and for each τ of length $f(n) - f(n - 1)$ let $M_{\sigma\tau}(n, n)$ be the set of reals B such that $\sigma * \tau * B \in D_{n,n}$.
- $M_{\sigma\tau}(n, n) \cap M_{\sigma\rho}(n, n) = \emptyset$ for any strings $\tau \neq \rho$ of length $f(n) - f(n - 1)$.
- Hence $\sum_{\tau \in 2^{f(n) - f(n-1)}} \mu(M_{\sigma\tau}(n, n)) \leq 1$...
- ... so $\mu(\hat{D}_{n,n} \cap [\sigma]) \leq 2^{-f(n)}$...
- ... and $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1) - f(n)}$.
Example: $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1) - f(n)}$

- Fix σ of length $f(n - 1)$ and for each τ of length $f(n) - f(n - 1)$ let $M_{\sigma\tau}(n, n)$ be the set of reals B such that $\sigma \ast \tau \ast B \in D_{n,n}$.
- $M_{\sigma\tau}(n, n) \cap M_{\sigma\rho}(n, n) = \emptyset$ for any strings $\tau \neq \rho$ of length $f(n) - f(n - 1)$.
- Hence $\sum_{\tau \in 2^{f(n) - f(n-1)}} \mu(M_{\sigma\tau}(n, n)) \leq 1$...
- ... so $\mu(\hat{D}_{n,n} \cap [\sigma]) \leq 2^{-f(n)}$...
- ... and $\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1) - f(n)}$.

PA and random degrees

\(\Pi_1^0\) classes and LR degrees
Example: \(\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)-f(n)} \)

- Fix \(\sigma \) of length \(f(n-1) \) and for each \(\tau \) of length \(f(n) - f(n-1) \) let \(M_{\sigma \tau}(n, n) \) be the set of reals \(B \) such that \(\sigma * \tau * B \in D_{n,n} \).
- \(M_{\sigma \tau}(n, n) \cap M_{\sigma \rho}(n, n) = \emptyset \) for any strings \(\tau \neq \rho \) of length \(f(n) - f(n-1) \).
- Hence \(\sum_{\tau \in 2^{f(n)-f(n-1)}} \mu(M_{\sigma \tau}(n, n)) \leq 1 \ldots \)
- \(\ldots \) so \(\mu(\hat{D}_{n,n} \cap [\sigma]) \leq 2^{-f(n)} \ldots \)
- \(\ldots \) and \(\mu(\hat{D}_{n,n}) \leq 2^{f(n-1)} \cdot 2^{-f(n)} = 2^{f(n-1)-f(n)} \).
Equivalence classes of Relative Randomness

- The *LR degrees* are equivalent classes containing oracles which induce the same notion of relative randomness.
- An LR degree x is less than another y if the notion of randomness that it represents is weaker than the one that y represents.
- That is, every y-random is x-random.
Equivalence classes of Relative Randomness

- The *LR degrees* are equivalent classes containing oracles which induce the same notion of relative randomness.
- An LR degree x is less than another y if the notion of randomness that it represents is weaker than the one that y represents.
- That is, every y-random is x-random.
Equivalence classes of Relative Randomness

- The *LR degrees* are equivalent classes containing oracles which induce the same notion of relative randomness.
- *An LR degree x is less than another $y* if the notion of randomness that it represents is weaker then the one that y represents.
- That is, every y-random is x-random.
Equivalence classes of Relative Randomness

- The *LR degrees* are equivalent classes containing oracles which induce the same notion of relative randomness.
- *An LR degree x is less than another y* if the notion of randomness that it represents is weaker than the one that y represents.
- that is, every y-random is x-random.
Known results

Theorem (Miller, second part independently by Yu)

Any LR degree forms a minimal pair with almost all others. In particular every the LR degrees of two relatively 2-random sets form a minimal pair.

Theorem (Miller)

If a set is low for Ω then its LR degree has countable number of predecessors.
Known results

Theorem (Miller, second part independently by Yu)
Any LR degree forms a minimal pair with almost all others. In particular every the LR degrees of two relatively 2-random sets form a minimal pair.

Theorem (Miller)
If a set is low for Ω then its LR degree has countable number of predecessors.
Known results

Theorem (Barmpalias)

A Δ^0_2 real has uncountably many LR predecessors iff it is not low for random.

Corollary

There is no Δ^0_2 minimal LR degree.
Theorem (Barmpalias)

A Δ^0_2 real has uncountably many LR predecessors iff it is not low for random.

Corollary

There is no Δ^0_2 minimal LR degree.
Low for Ω basis theorem

Theorem (Downey, Hirschfeldt, Miller, Nies)

Every nonempty Π^0_1 class contains a path which is low for Ω.
Theorem (Barmpalias and Ng)

Given a countable sequence \((C_i)\) of sets such that \(C_i \not\leq_{LR} \emptyset\) for all \(i \in \mathbb{N}\), and a nonempty \(\Pi^0_1\) class \(P\), there exists \(B \in P\) such that \(C_i \not\leq_{LR} B\) for all \(i\).

The proof is a forcing argument with \(\Pi^0_1\) classes.
Upper cone avoidance and Π^0_1 classes

Theorem (Barmpalias and Ng)

Given a countable sequence (C_i) of sets such that $C_i \not\leq_{LR} \emptyset$ for all $i \in \mathbb{N}$, and a nonempty Π^0_1 class P, there exists $B \in P$ such that $C_i \not\leq_{LR} B$ for all i.

The proof is a forcing argument with Π^0_1 classes.
Minimal pairs

Theorem (Barmpalias and Ng)

Every nonempty Π^0_1 class contains two paths with greatest lower bound 0 in the LR degrees.
Minimal pairs

Theorem (Barmpalias and Ng)

Every nonempty Π^0_1 class contains two paths with greatest lower bound 0 in the LR degrees.

- Assume there are no trivial paths in the class.
- Get a low for Ω in the class.
- Apply the cone avoidance result on the countably many predecessors of that path.
Minimal pairs

Theorem (Barmpalias and Ng)

Every nonempty Π^0_1 class contains two paths with greatest lower bound 0 in the LR degrees.

- Assume there are no trivial paths in the class.
- Get a low for Ω in the class.
- Apply the cone avoidance result on the countably many predecessors of that path.
Minimal pairs

Theorem (Barmpalias and Ng)

Every nonempty Π^0_1 class contains two paths with greatest lower bound 0 in the LR degrees.

- Assume there are no trivial paths in the class.
- Get a low for Ω in the class.
- Apply the cone avoidance result on the countably many predecessors of that path.
Minimal pairs

Theorem (Barmpalias and Ng)

Every nonempty Π^0_1 class contains two paths with greatest lower bound 0 in the LR degrees.

- Assume there are no trivial paths in the class.
- Get a low for Ω in the class.
- Apply the cone avoidance result on the countably many predecessors of that path.
Corollary (Barmpalias and Ng)

There is a minimal pair of LR degrees below $0'$.

Proof:

- By Barmpalias, Lewis, Stephan there is a Π^0_1 class without K-trivial paths such that all of its paths are LR-below $0'$.
- Apply the existence of minimal pairs in Π^0_1 classes to this class.
Corollary (Barmpalias and Ng)

There is a minimal pair of LR degrees below $0'$.

Proof:

• By Barmpalias, Lewis, Stephan there is a Π^0_1 class without K-trivial paths such that all of its paths are LR-below $0'$.
• Apply the existence of minimal pairs in Π^0_1 classes to this class.
Corollary (Barmpalias and Ng)

There is a minimal pair of LR degrees below \emptyset'.

Proof:

- By Barmpalias, Lewis, Stephan there is a Π^0_1 class without
 K-trivial paths such that all of its paths are LR-below \emptyset'.

- Apply the existence of minimal pairs in Π^0_1 classes to this
 class.
Corollary (Barmpalias and Ng)

There is a minimal pair of LR degrees below \(0'\).

Proof:

- By Barmpalias, Lewis, Stephan there is a \(\Pi^0_1\) class without K-trivial paths such that all of its paths are LR-below \(\emptyset'\).
- Apply the existence of minimal pairs in \(\Pi^0_1\) classes to this class.
LR bases for randomness

- X is an LR basis for randomness if there is some Y which is X-random and $X \leq_{LR} Y$
- Every K-trivial is an LR basis for randomness
- (Barmpalias, Lewis and Stephan) There is an LR basis for randomness which is not K-trivial.
- (Barmpalias and Ng) Every LR basis for randomness is GL_1.
LR bases for randomness

- X is an LR basis for randomness if there is some Y which is X-random and $X \leq_{LR} Y$
- Every K-trivial is an LR basis for randomness
- (Barmpalias, Lewis and Stephan) There is an LR basis for randomness which is not K-trivial.
- (Barmpalias and Ng) Every LR basis for randomness is GL$_1$.
LR bases for randomness

- X is an LR basis for randomness if there is some Y which is X-random and $X \leq_{LR} Y$
- Every K-trivial is an LR basis for randomness
 - (Barmpalias, Lewis and Stephan) There is an LR basis for randomness which is not K-trivial.
 - (Barmpalias and Ng) Every LR basis for randomness is GL$_1$.
LR bases for randomness

- X is an LR basis for randomness if there is some Y which is X-random and $X \leq_{LR} Y$
- Every K-trivial is an LR basis for randomness
- (Barmpalias, Lewis and Stephan) There is an LR basis for randomness which is not K-trivial.
- (Barmpalias and Ng) Every LR basis for randomness is GL_1.

\[\Pi^0_1 \] classes and LR degrees
LR bases for randomness

- X is an LR basis for randomness if there is some Y which is X-random and $X \leq_{LR} Y$
- Every K-trivial is an LR basis for randomness
- (Barmpalias, Lewis and Stephan) There is an LR basis for randomness which is not K-trivial.
- (Barmpalias and Ng) Every LR basis for randomness is \GL_1.
More applications of Π^0_1 arguments to LR

Theorem (Barmpalias and Ng)

*There exists a properly $\Delta^0_{\omega^1+1}$ LR degree below \emptyset'."

- We need a $\emptyset^{(\omega)}$ oracle for such a construction.
- But how can we keep the constructed set $\leq_{LR} \emptyset'$?
- We use a Π^0_1 class with special coding properties, all of whose paths are LR below \emptyset'.
- We restrict the construction in the class and force in a construction relative to $\emptyset^{(\omega)}$.
More applications of Π^0_1 arguments to LR

Theorem (Barmpalias and Ng)

There exists a properly $\Delta^0_{\omega+1}$ LR degree below $0'$.

- We need a $\emptyset^{(\omega)}$ oracle for such a construction
- But how can we keep the constructed set $\leq_{LR} \emptyset'$?
- We use a Π^0_1 class with special coding properties, all of whose paths are LR below \emptyset'
- we restrict the construction in the class and force in a construction relative to $\emptyset^{(\omega)}$.
More applications of Π^0_1 arguments to LR

Theorem (Barmpalias and Ng)

$\text{There exists a properly } \Delta^0_{\omega+1} \text{ LR degree below } \emptyset'$.

- We need a $\emptyset^{(\omega)}$ oracle for such a construction
- But how can we keep the constructed set $\leq_{LR} \emptyset'$?
 - We use a Π^0_1 class with special coding properties, all of whose paths are LR below \emptyset'
 - we restrict the construction in the class and force in a construction relative to $\emptyset^{(\omega)}$.

More applications of Π^0_1 arguments to LR

Theorem (Barmpalias and Ng)

There exists a properly $\Delta^0_{\omega+1}$ LR degree below \emptyset'.

- We need a $\emptyset^{(\omega)}$ oracle for such a construction
- But how can we keep the constructed set $\leq_{LR} \emptyset'$?
- We use a Π^0_1 class with special coding properties, all of whose paths are LR below \emptyset'
- we restrict the construction in the class and force in a construction relative to $\emptyset^{(\omega)}$.

More applications of Π^0_1 arguments to LR

Theorem (Barmpalias and Ng)

There exists a properly $\Delta^0_{\omega+1}$ LR degree below $0'$.

- We need a $\emptyset^{(\omega)}$ oracle for such a construction
- But how can we keep the constructed set $\leq_{LR} \emptyset'$?
- We use a Π^0_1 class with special coding properties, all of whose paths are LR below \emptyset'
- we restrict the construction in the class and force in a construction relative to $\emptyset^{(\omega)}$.
PA and random degrees

\[\Pi_1^0 \text{ classes and LR degrees} \]

\[\Delta_{\omega+1}^0 \cdot \Delta_3^0 \cdot \Delta_2^0 \cdot \text{arithmetical} \]

\[0' \]

\[0 \]
Some questions

- Are the c.e. Turing degrees and c.e. LR degrees elementarily equivalent?
- Are there minimal pairs in the c.e. LR degrees?
- Characterize the LR bases for randomness
- Characterize the LR degrees which have an uncountable number of predecessors.
- Are there minimal LR degrees?
- Given a PA degree and a random below it, can you find another random below it which joins the former to the given PA?
Some questions

- Are the c.e. Turing degrees and c.e. LR degrees elementarily equivalent?
- Are there minimal pairs in the c.e. LR degrees?
- Characterize the LR bases for randomness
- Characterize the LR degrees which have an uncountable number of predecessors.
- Are there minimal LR degrees?
- Given a PA degree and a random below it, can you find another random below it which joins the former to the given PA?
Some questions

- Are the c.e. Turing degrees and c.e. LR degrees elementarily equivalent?
- Are there minimal pairs in the c.e. LR degrees?
- Characterize the LR bases for randomness
- Characterize the LR degrees which have an uncountable number of predecessors.
- Are there minimal LR degrees?
- Given a PA degree and a random below it, can you find another random below it which joins the former to the given PA?
Some questions

- Are the c.e. Turing degrees and c.e. LR degrees elementarily equivalent?
- Are there minimal pairs in the c.e. LR degrees?
- Characterize the LR bases for randomness
- Characterize the LR degrees which have an uncountable number of predecessors.
- Are there minimal LR degrees?
- Given a PA degree and a random below it, can you find another random below it which joins the former to the given PA?
Some questions

- Are the c.e. Turing degrees and c.e. LR degrees elementarily equivalent?
- Are there minimal pairs in the c.e. LR degrees?
- Characterize the LR bases for randomness
- Characterize the LR degrees which have an uncountable number of predecessors.
- Are there minimal LR degrees?
- Given a PA degree and a random below it, can you find another random below it which joins the former to the given PA?
Some questions

- Are the c.e. Turing degrees and c.e. LR degrees elementarily equivalent?
- Are there minimal pairs in the c.e. LR degrees?
- Characterize the LR bases for randomness
- Characterize the LR degrees which have an uncountable number of predecessors.
- Are there minimal LR degrees?
- Given a PA degree and a random below it, can you find another random below it which joins the former to the given PA?