Degrees of unsolvability and degrees of compressibility

George Barmpalias

Victoria University of Wellington

Marseille, June 2009
Plan of the talk

- Introduction
- Triviality
- Relativization
- Structure of LK degrees
- Main result and applications
- Further questions
- References
The theory of computable sets and numbers (Turing 1936) naturally led to the theory of relative computation and unsolvability (Turing 1939, Post 1943)

In the same way...

- the study of the ‘descriptive’ complexity of strings and streams has naturally lead to the study of relativized complexity
Oracle machines

- Relative computability aims at providing measures to compare and study objects according to their information content.

- In the same way, relative randomness aims at comparing mathematical objects with respect to the randomness-related properties they might have.

- In this transition from the effective to the relativized theory, Turing machines get equipped with a source of external information.
The notion of a computable set is central in computability theory.

Recent work on effective randomness suggests that the notion of K-triviality is of analogous importance in this area.

A is K-trivial if its initial segments have trivial complexity: $K(A \upharpoonright n) \leq^+ K(0^n)$, for all $n \in \mathbb{N}$.

Let K^X be the prefix-free complexity relative to oracle X

- K^X is based on a machine which can use external information X for compressing.

- Therefore it may compress more effectively than a machine without an oracle.
More triviality

Let K^X be the prefix-free complexity relative to oracle X

- K^X is based on a machine which can use external information X for compressing.
- Therefore it may compress more effectively than a machine without an oracle.

A is low for K if it does not have useful information for compressing strings: $K^A(\sigma) \leq^+ K(\sigma)$, for all strings σ.

Nies/Hirschfeldt showed that \(\mathit{K-trivials = low for K} \)

Downey/Hirschfeldt/Laforte introduced the following measure: \(A \leq_K B \) if \(K(A \upharpoonright n) \leq^+ K(B \upharpoonright n) \) for all \(n \).

Similarly, Nies defined: \(A \leq_{LK} B \) if \(K_B^A(\sigma) \leq^+ K_A(\sigma) \) for all strings \(\sigma \).

Then \(A \equiv_{LK} B \) means that \(A, B \) have the same power for compression

Compare: \(A \equiv_T B \) means that \(A, B \) have the same power for computation, same information.
Facts

- Miller showed that $A \equiv_{LK} B$ iff A-randoms $= B$-randoms.

- The LK measure is a natural extension of the relative Turing measure.

Remarkable fact: There is a non-computable A such that $A \equiv_{LK} \emptyset$.
Structure theory

- The relation \leq_{LK} and its connections with \leq_T have been investigated in the last 5 years.
- A lot of the popular open problems in randomness today are about the relationship between \leq_{LK}, \leq_T.
- \leq_{LK} has uncountable lower cones!
- However locally, the algebraic structure of \leq_{LK} and \leq_T looked the same.
- ...the techniques of the c.e. degrees and degrees in general seemed to have natural counterparts in the LK degrees.
Structure theory

- The relation \leq_{LK} and its connections with \leq_T have been investigated in the last 5 years.
- A lot of the popular open problems in randomness today are about the relationship between \leq_{LK}, \leq_T.
- \leq_{LK} has uncountable lower cones!
- However locally, the algebraic structure of \leq_{LK} and \leq_T looked the same.
- . . . the techniques of the c.e. degrees and degrees in general seemed to have natural counterparts in the LK degrees.

. . . until now
Main result

Theorem

If X, Y are Δ^0_2 and not low for K, then there exists a c.e. set A which is not low for K, such that $A \leq_{LK} X$ and $A \leq_{LK} Y$.
Corollary

If X, Y are relatively 1-random, this does not imply that the degrees L^K-below both of them are K-trivial.

Contrast: This holds for L^K replaced by Turing.
Corollary: Σ^0_1, Δ^0_2 structures

The Σ^0_1, Δ^0_2 structures of the LK degrees and the Turing degrees are not elementarily equivalent.
Are there minimal pairs for LK?

Miller (2007) proved... There are minimal pairs of LK, even in Δ^0_3.
Are there minimal pairs for $L K$?

Miller (2007) proved...

There are minimal pairs of $L K$, even in Δ^0_3.
Structure $\leq_{LK} \emptyset'$

Theorem (Barmpalias/Lewis/Ng 2008)

There is a minimal pair for \leq_{LK} which is $\leq_{LK} \emptyset'$.

Proof:

- There is a Π^0_1 class with no low for K members, with all members $\leq_{LK} \emptyset'$ (Barmpalias/Lewis/Stephan 2007)

- Every Π^0_1 class contains a path with countably many LK-predecessors (Miller, Reimann/Slaman)

- Hence, by Jockusch-Soare methods, every Π^0_1 class contains a minimal pair for \leq_{LK}.
Structure $\leq_{LK} \emptyset'$

Theorem (Barmpalias/Lewis/Ng 2008)

*There is a minimal pair for \leq_{LK} which is $\leq_{LK} \emptyset'$.***
Theorem (Barmpalias/Lewis/Ng 2008)

There is a minimal pair for \leq_{LK} *which is* $\leq_{LK} \emptyset'$.

Proof:

- There is a Π^0_1 class with no low for K members, with all members $\leq_{LK} \emptyset'$ (Barmpalias/Lewis/Stephan 2007)
- Every Π^0_1 class contains a path with countably many LK-predecessors (Miller, Reimann/Slaman)
- Hence, by Jockusch-Soare methods, every Π^0_1 class contains a minimal pair for \leq_{LK}.
Corollary

The structure of \(\leq_{LK} \) restricted to \(\leq_{LK} \emptyset' \) is not elementarily equivalent to \(\leq_T \) restricted in \(\Delta_2^0 \) or \(\Sigma_1^0 \).
Many questions remain

Much of the basic machinery for the study of this structure has been developed.

▶ Are the LK degrees an upper semi-lattice?

▶ Are the c.e. LK degrees dense?

▶ Is there a minimal LK degree?

▶ Characterize the LK degrees with countable lower cones.

▶ . . . and so on . . . see literature.
References

- Barmpalias, Elementary differences between the degrees of unsolvability and degrees of compressibility.

- Papers by Barmpalias/Lewis/Ng/Soskova/Stephan

- Nies, Computability and Randomness, Oxford Press 2009

- Webpage: http://www.mcs.vuw.ac.nz/~georgeb/
Thank you!