
Notre Dame Journal of Formal Logic
Volume 47, Number 3, 2006

The Hypersimple-Free C.E. WTT Degrees
Are Dense in the C.E. WTT Degrees

George Barmpalias and Andrew E. M. Lewis

Abstract We show that in the c.e. weak truth table degrees if b < c then there
is an a which contains no hypersimple set and b < a < c. We also show that
for every w < c in the c.e. wtt degrees such that w is hypersimple, there is a
hypersimple a such that w < a < c. On the other hand, we know that there are
intervals which contain no hypersimple set.

1 Introduction

Hypersimple sets were introduced as a solution to Post’s problem for the structure of
the truth table degrees. Rogers observed that they were a natural solution to Post’s
problem for the weak truth table degrees as well. So it is interesting to know the
distribution of these natural solutions in the weak truth table degrees. Moreover,
weak truth table reducibility is the most appropriate for the study of hypersimplicity
given that its essence is the existence of computable bounds (in the use of the rel-
ative computation) and hypersimplicity of a set A is based on the same notion: the
lack of a computable sequence of bounds below which we get (strictly) more and
more elements outside A. This connection becomes even clearer if we note that
elements outside A below computable bounds are also important in a weak truth
table reducibility since only elements not yet in A and below the use can rectify
computations. We show that between any c.e. wtt degrees b < c there is another
c.e. wtt degree which does not contain any hypersimple set. We call such degrees
hypersimple-free. Degrees which contain hypersimple sets are called hypersimple.

We also show that for every w < c in the c.e. wtt degrees such that w is hyper-
simple, there is a hypersimple a such that w < a < c. We know from Barmpalias [1]
that there are nontrivial intervals (b, c) which contain no hypersimple sets. In fact,
outside any nontrivial upper cone of Turing degrees we can find c.e. wtt degrees b
such that no c ≥ b is hypersimple.

Received July 1, 2005; accepted February 1, 2006; printed November 14, 2006
2000 Mathematics Subject Classification: Primary, 03F60; Secondary, 03D30
Keywords: hypersimple, weak truth table degrees, density
c©2006 University of Notre Dame

361

362 George Barmpalias and Andrew E. M. Lewis

In the following, all degrees will be c.e. and wtt. We use standard notation and
when we describe a construction we assume a current value (corresponding to the
current stage) for each of the various parameters involved. All sets will be c.e. and
A ≤wtt B is indicated as 8B

= A;ϕ when we wish to make the algorithm (func-
tional) 8 and the computable use ϕ of the reduction explicit. The use of computa-
tions made by wtt functionals is assumed to be strictly increasing. Finally, we use ` to
denote the length of agreement of a potential reduction; for example, `(8B

= A;ϕ)
is the length of agreement of A ≤wtt B via the functional 8 and with use bounded
by the partial computable function ϕ.

2 Hypersimple-free c.e. wtt Degrees

Theorem 2.1 The hypersimple-free c.e. wtt degrees are dense in the c.e. wtt
degrees. That is, if b < c then there exists a c.e. hypersimple-free a such that
b < a < c.

Proof By the density of the c.e. wtt degrees it is enough to show that for every
b < c there exists a hypersimple-free a with b ≤ a ≤ c. Given the corresponding
c.e. sets B,C we are going to construct a c.e. set A such that B ≤wtt A ≤wtt C which
is not equivalent to any hypersimple set. The first type of requirements guarantees
that no hypersimple set is in a:

Q8,9,W : 8W
= A;ϕ and 9 A

= W ;ψ ⇒

∃(Dn)((Dn) is a sequence of
consecutive segments of N ∧

∀n(W ∩ Dn 6= ∅))
where8,9 run over all partial computable functionals and W over all c.e. sets. Next
we have the coding of B into A:

P : B ≤wtt A.

This has highest priority and is satisfied in the usual way: we fix a coding (com-
putable and 1-1) function p : N → N (e.g., p(n) = 2n) with coinfinite image (so
that we have spare numbers to use for the other requirements). If every time that n
appears in B we enumerate p(n) into A then P is satisfied.

Finally we need to ensure that

N : A ≤wtt C.

We will do this by equipping the construction with a C-permitting requirement re-
garding the enumerations into A. We begin by describing an atomic module for
Q8,9,W . The idea behind this strategy is the following: assuming 8W

= A;ϕ we
enumerate a strong array (Dn) and try to achieve W ∩ Dn 6= ∅ for all n. The def-
inition of each Dn is such that if all of its elements appear in W later on (giving
W ∩ Dn = ∅) then by preserving a suitable segment of W via the additional hypoth-
esis 9 A

= W ;ψ we are able to ensure 8W
6= A;ϕ with a single diagonalization.

There are two complications that must be taken into account here. First, if we con-
sider all requirements, such a diagonalization must be C-permitted. Second, any
diagonalization may later be canceled by a B-enumeration. But we can deal with
these problems if we iterate the above procedure, use iterated diagonalizations for
a single attack, and apply a C-permitting argument modulo B. Every Dn definition
will be associated with a number of diagonalization witnesses a0, . . . , an which will
be used if and when Dn ⊆ W occurs.

Hypersimple-Free C.E. WTT Degrees 363

Let U be an infinite computable set especially for the use of a fixed Q strategy
(i.e., disjoint from the set of B-codes V and the sets belonging to other Q strategies).
Below, s is the current stage and any parameters mentioned in the construction are
supposed to have a current value.

An (n-attack setup)

(1) Wait for `(9 A
= W ;ψ) > x for all x ∈ ∪i<n Di and let u strictly bound the

use of all these 9-computations.
(2) Pick a number of witnesses a0 < · · · < at in U − A such that u < ai where

t is the number of B-codes (e.g., elements of 2N) in ∪i<n Di .
(3) Wait for `(8W

= A;ϕ) > at and define Dn = {max ∪i<n Di + 1, . . . ,
ϕ(at)}.

When An is run, Di for i < n are already defined. If Dn ⊆ W later on, we
will diagonalize by ai ↘ A and by imposing a finite restraint on A (in order
to preserve a segment of W). This disagreement will be preserved unless a
B-enumeration happens below u.

Bn (D-failure step; in particular when the D-enumeration done in An has been
proved wrong, i.e., Dn ⊆ W .)

Consider the witnesses ai and the use u which were defined in step An . Set i = 0.

(a) Wait until `(9 A
=W ;ψ)> x for all x ∈∪ j<n D j and `(8W

= A;ϕ)>ai .
(b) Restrain A � u where u is the use of the 9-computations mentioned and

suggest the enumeration ai ↘ A. If in the meantime A � u changes (e.g.,
by a B-enumeration) then Bn no longer suggests ai ↘ A; upon next being
passed control go to (a).

(c) If this enumeration is done by the construction later on, increase i by one and
go to (a).

It will be u < ai as in step An . If we are permitted to put ai ↘ A, this
enumeration respects the A restraint we imposed in (a) above. This diago-
nalization can only be rectified via a W -enumeration below ϕ(ai). But no
such enumeration can happen with elements in Dn because these are already
in W (this made us start step Bn). And the elements in ∪i<n Di are protected
by an A-restraint. So if the strategy we are considering is not injured, the
only reason why the disagreement is rectified is that A � u changed; this may
only happen due to a B � u enumeration. According to the choice of t there
will be at most t such B-enumerations—less than our witnesses. So either we
succeed or some witness is not permitted.

The parts An , Bn above are only a piece of the whole Q-strategy. We call them an
AB-routine. A recursive iteration of AB-routines AB(0), AB(1), . . . constitutes the
Q-strategy. We explain how a single AB-routine works. It enumerates its own array
(Dn), which is a sequence of consecutive segments of (and potentially covering)
N. It starts by performing successively the steps A1, A2, Each An defines Dn .
It also finds suitable witnesses ai for a “backup” diagonalization ripple planned in
case Dn ⊆ W later on, that is, in case the guess made in An (that Dn intersects the
complement of W) is wrong.

364 George Barmpalias and Andrew E. M. Lewis

After that, An has been completed and in order to pass to An+1 we check whether
Dk ⊆ W holds for some k ≤ n. In other words, whether or not one of the W -guesses
we have made so far (via (Dk)) looks incorrect. If not, then we can proceed to An+1
in order to push (Dk) further. Otherwise for the least k with Dk ⊆ W we pass control
to Bk . No more steps apart from Bk will ever be performed in this AB-routine. Bk
activates the backup diagonalization ripple with witnesses a0, . . . , at prepared in Ak :
it suggests (at some later suitable stage) a0 as a witness for 8W

6= A;ϕ and it also
restrains (via 9 and a restraint on A) the W -use of the computation (even after a
possible a0 ↘ A). If a0 is C-permitted the disagreement may be rectified by a B
enumeration, in which case we will pass to the next witness and so on. According to
the choice of t we either succeed or one of our witnesses is not permitted. Note that
in the atomic module above there are “wait” instructions. Taking into account that
we may have to wait forever, the outcomes of an AB-routine are the following.

1
AB

As we go through A1, A2, . . . we get stuck in a wait instruction of some Ai
and stay there forever. According to the wait conditions, this implies the
satisfaction of Q.

2
AB

Before passing to a next Ai we collapse onto a Bn-step. This does not auto-
matically imply satisfaction of Q but it advances the implicit functional by
which we wish to compute C from B in case some strategy fails to succeed
(the permitting argument that will be used in the verification).

3
AB

We go through A1, A2, . . . with no permanent distraction. Under this
outcome the AB-routine produces an infinite disjoint array (Dn) with
Dn ∩ W 6= ∅ for all n, thus proving that W is not hypersimple (and Q
is satisfied). There are no restraints associated with this outcome.

Iteration and coordination of AB-routines We say that an AB-routine requires
attention if it is ready to perform the next step or it has stopped on a Bn step and
the currently suggested witness ai is permitted (i.e., C � ai has changed this stage).
Turning to the whole Q-strategy, we start by executing AB(0) (which is identical
to the typical AB-routine described above) and continue as follows in an inductive
mode. Every time we access Q we consider the largest t such that we have previously
run AB(t). If some AB(i), i ≤ t requires attention, we pass control to the least one;
if it required attention because its suggested witness is permitted, we enumerate that
witness into A. If no AB(i), i ≤ t requires attention, we access AB(t); if it is already
in the stage of a suggested witness under a Bn step we start AB(t + 1) with the
additional restriction that all the an-witnesses chosen during its An-steps are larger
than the witnesses already suggested by the AB(i) for i ≤ t , when they terminated,
and larger than the restraints imposed by these routines.

Injury among AB-routines Note that when an AB routine performs an A-
enumeration it may interfere with the restraints of lower AB-routines which have
reached a Bt step. In this case we initialize those steps as follows: we go to part
(a) and set the parameter i equal to the least index such that ai 6∈ A yet. This
does not affect our argument: if a diagonalization of AB is rectified because of a
diagonalization of a higher AB′, before it enumerates the next witness there must be
a B � u change which will rectify the higher diagonalization.

Hypersimple-Free C.E. WTT Degrees 365

C-permitting and outcomes From the above, any enumeration into A is C-
permitted and so A ≤wtt C . Note that as we go through AB(1),AB(2), . . . , we build
on more and more restraints on A. Since a diagonalization can only be rectified by
a B-change below computable bounds, if C is indeed noncomputable from B some
diagonalization will succeed. So the production of AB routines will stop (since they
require 8-agreement on larger and larger segments) and the restraints will end up
finite. The outcomes of the entire Q-strategy are the following.

1
Q

As we go through AB(1),AB(2), . . . we get stuck in a wait instruction of
some AB(i) and stay there forever. Or some AB(i) never stops running. Ei-
ther case implies the satisfaction of Q as before and also that the overall
A-restraints that Q imposes are bounded (i.e., finite).

2
Q

We never stop running AB(1),AB(2), By permitting (see below) this
means that we can compute C from B: there are infinitely many witnesses
suggested and if some n enters C it will permit a diagonalization. This must
be rectified and so a B enumeration must happen below computable bounds.

These outcomes show that our strategy is successful. Moreover, it is not difficult to
see that all Q strategies can work together with only a finite injury effect. Whenever
some Q acts (i.e., enumerates a number into A or increases its restraints) it initializes
all lower requirements. But according to the outcomes above it acts only finitely
often (imposing a final finite A-restraint) and so it allows lower priority requirements
(which respect the higher priority A-restraint) to be satisfied. When a Q strategy
is initialized, it chooses witnesses larger than any witness chosen so far by any Q
strategy in the construction. Our priority list is

P > Q0 > Q1 > · · ·

where (Qi) is an effective list of the Q requirements.

Construction At stage s, first check whether any B-enumeration happened. If
n ↘ B at s, put p(n) ↘ A. Then start accessing Qi , i = 0, . . . successively until
one of them (say Qt) acts (i.e., enumerates a number into A or increases its restraints)
or we reach Qs . Initialize Q j for j > t .

Verification The following lemmas show that the construction produces a set A
which satisfies the requirements.

Lemma 2.2 A ≤wtt C.

Proof Suppose that 8C
= B;ϕ. We want to answer “n ∈ A?” using C � ϕ(n). If

n ∈ p(N)we can effectively answer by asking B � n (and so, by asking C � ϕ(n)). If
n ∈ U , that is, the special set used by some Q requirement, we only need to choose
a stage s after C � n has taken its final value and we can be sure that n 6∈ A unless
it is already there by that stage. Finally, if n does not belong to any U either, we can
conclude that n 6∈ A. �

Lemma 2.3 B ≤wtt A.

Proof Since P has highest priority, n ∈ B ⇔ p(n) ∈ A. �

366 George Barmpalias and Andrew E. M. Lewis

Lemma 2.4 Suppose that Q stops being injured by higher priority requirements.
Then for each of its AB-routines which collapses onto a B-step the following holds:
if it has enumerated a witness into A, it will not enumerate a new witness unless
there is a change in B � u (where u is the parameter of that particular B-step of the
routine). So the available witnesses of AB (including the current one) will always be
more than the elements of N − B below u.

Proof For the first diagonalization it holds trivially. If it holds up to some diagonal-
ization we argue as follows: an extra witness will not be used unless the current dis-
agreement is spoiled. This can only happen by a B � u change or an A-enumeration
by a higher AB′-routine. In the first case the claim holds. In the second case a dis-
agreement will be created on the same reduction. The next witness of AB cannot be
used unless that higher disagreement is rectified (because we require an expansion-
ary stage). Now the higher disagreement can only be rectified by a B � u-change
or by an even higher diagonalization and so on. Since there are only finitely many
AB′-routines higher than AB this procedure must resolve with a B � u-change. This
concludes the argument. �

Lemma 2.5 Each Q requirement is satisfied and acts only finitely many times.

Proof In an inductive fashion, assume we are in a stage where all higher priority
requirements than Q (apart from P) have stopped requiring attention and are satis-
fied. If Q is not satisfied, its strategy will run forever, producing infinitely many AB
routines; each of them will terminate on a Bn step, thus passing control to a multiple
diagonalization system which suggests A-enumerations (otherwise W is not hyper-
simple and so it is satisfied). Some of these witnesses are used, but their diagonaliza-
tions may be rectified through B-enumerations. The crucial point here is that each
multiple diagonalization system (i.e., the Bt -step in which each AB-routine stopped)
has to stop because one of its witnesses does not get C-permission, provided that the
functionals 8, 9 of the requirement are total.

By a permitting argument we are going to show that if none of the diagonalizations
are permanent (i.e., the requirement is not satisfied), then we are able to compute C
from B (in a wtt way). In order to define the computable use of the reduction we
associate each n ∈ N with the least AB routine (in particular, its multiple diagonal-
ization system Bt) which has all of its witnesses > n. The use of the reduction on n
will be the parameter u of step Bt . Note that a diagonalization from this system can
only be rectified either by a B � u change or by a higher diagonalization (by some
higher AB-routine) whose rectification will also require a B � u change. To compute
“n ∈ C?” we wait until a stage s0 where step Bt suggests a witness (this will happen
since Q is not satisfied and because of Lemma 2.4). Then we enumerate the axiom

n ∈ C ⇐⇒ n ∈ C[s0]

with use B � u. If n ↘ C at a later stage s1 consider the following cases.

Case (a): Some diagonalization happens by higher AB-routines in the interval
(s0, s1]. This disagreement can only be rectified by a B � u change or by the creation
of a higher disagreement (i.e., at a smaller initial segment) by a higher AB. But then
the higher disagreement can only be rectified by a B � u change or by the creation
of an even higher disagreement and so on. Since there are only finite number of AB

Hypersimple-Free C.E. WTT Degrees 367

routines preceding the one that n is associated with, this must resolve to a B � u
change.

Case (b): If no action is performed by higher AB-routines and B � u is intact, the
current witness of Bt will still be valid and it will be permitted at s1. Now this
disagreement must be rectified and so a B � u-change must occur later on.

In any case there will be a change in B � u and this shows that C ≤wtt B, a
contradiction. �

This completes the proof.

3 Hypersimple Degrees

Theorem 3.1 If w < c in the c.e. wtt degrees and w is hypersimple, then there is a
hypersimple a such that w < a < c.

Proof We have seen in Barmpalias [1] that there is a certain type of conflict when
we try to construct a hypersimple set A above a given W , and sometimes this makes
such a construction impossible. In particular, there are a lot of degrees (outside any
nontrivial Turing upper cone) which are not bounded by any hypersimple degree.
Below we will see how to manage this conflict when we have the information that
W is hypersimple. If Dn is an effective enumeration of all finite sets and (8, ϕ) runs
over an effective enumeration of all partial computable functionals/functions then
the following requirements guarantee the result:

N : A ≤wtt C
P : W ≤m A

S8,ϕ : 8W
6= A;ϕ

Rϕ : ∃n(Dϕ(n) ⊆ A) ∨ Dϕ is not a strong array.

We say that Dϕ is a strong array if ϕ is computable and for n 6=m, Dϕ(n)∩Dϕ(m)=∅.
Notice that P asks for something stronger than we really need, namely, m-
reducibility instead of wtt. Fix a computable c : N 7→ N which is 1-1 and
such that N − c(N) is infinite (e.g., c(n) = 2n). We will arrange that

n ∈ W ⇐⇒ c(n) ∈ A,

thus satisfying P . Assume a priority list where P has highest priority and the in-
finitely many S8,ϕ , Rϕ follow in an effective way (based on the effective enumera-
tion of (8, ϕ) that we assumed earlier). Each of S8,ϕ , Rϕ will be finitary (i.e., act
finitely often) and any A-enumeration they do must not injure P in any way. An
A-enumeration affects P only when it involves c-codes, that is, elements in c(N).

S8,ϕ strategy As usual, we can assume that ϕ is strictly monotone. We will
use Sacks coding in order to code enough information from C so that W cannot wtt-
compute A (given that W cannot wtt-compute C). The problem is that the codes may
be used by hypersimplicity requirements. So we must restrain them and every time
this restraint is violated we have to start the strategy from the beginning. Since the
Sacks coding will leave the length of agreement bounded (8 being a wtt functional)
our restraints will be finite.

The strategy works as follows: first, if some n ↘ C in the current stage and n
is associated with an active code, it enumerates the code into A. Second, it finds

368 George Barmpalias and Andrew E. M. Lewis

the least i 6∈ C and i < `(8W
= A;ϕ) for which it has not assigned a code and it

assigns the least number which is

(1) larger than the restraints of higher priority requirements,
(2) not in A,
(3) not in c(N),
(4) larger than i .

This code will be active when it is below `(8W
= A;ϕ) and inactive otherwise. It

restrains all the codes it has defined so far and it requires attention when some n ↘ C
with an active code or at expansionary stages (when `(8W

= A;ϕ) is larger than
ever before). Notice that once a code has been assigned it is permanent (although it
may be inactive).

Rϕ strategy Although it was easy to find a strategy for S which does not interfere
seriously with P , it is more difficult to do the same with R, since hypersimplicity
requirements cannot afford to choose their witnesses from a prearranged computable
set. So we have to allow them to enumerate into elements of c(N) as well and to avoid
the destruction of P we will take advantage of the hypersimplicity of W . Based on
the given strong array (Dϕ(n)) (which tries to show that A is not hypersimple) we
will construct a strong array (Gn) which tries to show that W is not hypersimple.
When (Gn) fails, that is, Gk ⊆ W for some k, we will cause a (Dϕ(n))-failure
(i.e., Dϕ(k) ⊆ A for some k) without creating any potential problems to P . Note
that (Gn) will definitely fail since W is given hypersimple. To be more specific, we
simply define

Gn := {k | c(k) ∈ Dϕ(n)}.

Now since W is hypersimple, some Gn ⊆ W at some stage (in fact this will happen
for infinitely many n). But then Rϕ can be satisfied by putting into A only the
elements in Dϕ(n) − c(N); indeed, c(N) ∩ Dϕ(n) is already in A by P ’s module and
Gn ⊆ W . In other words we satisfy R without enumerating into A any c-codes
(such an enumeration is left to P). Of course, since we want to build A ≤wtt C such
a Dϕ(n) enumeration must be C-permitted. So the R strategy works by suggesting
various Dϕ(n), n ∈ N for A-enumeration (those with Gn ⊆ W) and it enumerates the
first one which is C-permitted (i.e., there is a C � min Dϕ(n) change on the current
stage) and all of its elements are greater than the current restraint. It requires attention
every time it has a new suggestion D to make or an enumeration to perform of an
existing suggestion D.

Construction In order to let all the strategies work together we only need to make
sure that lower priority requirements respect the restraint r set by higher ones. The
only strategies which impose restraints are S which restrain their codes. Whenever
an S or R receives attention we initialize all lower priority requirements. Every S
chooses codes greater than the restraint r ; R only enumerates into A a Dϕ(n) with
all members greater than r . The construction is, at stage s,

1. for every n, if n ∈ W (and c(n) 6∈ A) put c(n) ↘ A;
2. find the least S or R which requires attention and run the relevant strategy;

initialize the lower priority requirements.

Hypersimple-Free C.E. WTT Degrees 369

Verification

Lemma 3.2 A ≤wtt C.

Proof To answer “n ∈ A?” we first check whether n ∈ c(N). If yes, we can easily
C-answer it since W <wtt C (no strategy, apart from P , enumerates c-codes into A).
If not, we wait until a stage s0 larger than n where C � n is correct. If n is not in A
by that stage, it is not going to be in later. Indeed, by the C-permitting we require in
the construction, no R requirement will enumerate n into A after s0. Also, n is not
going to be enumerated into C as a code of some S since this can only happen at a
stage where C � n changes. �

Lemma 3.3 W ≤wtt A.

Proof According to the c-coding we only need to show that if n 6∈ W at some stage
then c(n) 6∈ A at the same stage. This holds as the R requirements (and of course
the S requirements) do not enumerate any c-codes in A (unless they are already in
A). �

Lemma 3.4 All S, R requirements are satisfied and stop requiring attention after
a certain stage.

Proof Assume that all higher strategies have stopped requiring attention. If S was
not satisfied we show how to wtt-compute C from W : to answer “n ∈ C?” wait
until the strategy associates n with a code or n ↘ C . This will happen since
`(8W

= A;ϕ) → ∞. If t is the code then wait until a stage where W � ϕ(t) is
true and `(8W

= A;ϕ) > t . From now on t will be active and so n cannot enter C
later on since t would create a permanent disagreement on8W

= A, a contradiction.
Since C 6≤wtt W , `(8W

= A;ϕ) must come to a limit and so S is satisfied and stops
requiring attention.

In the case of R we know that infinitely many D will be suggested for enumera-
tion into W . If C failed to give the permitting required in order to satisfy R it would
be computable. �

This concludes the proof of the theorem.

References

[1] Barmpalias, G., “Hypersimplicity and semicomputability in the weak truth table de-
grees,” Archive for Mathematical Logic, vol. 44 (2005), pp. 1045–65. Zbl 1077.03026.
MR 2193189. 361, 367

Acknowledgments

Barmpalias was supported by EPSRC Research Grant No. EP/C001389/1. Lewis was
supported by EPSRC grant No. GR /S28730/01. Both authors were partially supported
by the NSFC Grand International Joint Project, No. 60310213, “New Directions in the
Theory and Applications of Models of Computation.” The authors would like to thank
Wei Wang and Decheng Ding for their hospitality in the Nanjing University in May 2005
where this work started; we also thank Angsheng Li who supported our visit to China.

370 George Barmpalias and Andrew E. M. Lewis

School of Mathematics
University of Leeds
Leeds LS2 9JT
UNITED KINGDOM
georgeb@maths.leeds.ac.uk
thelewisboy@hotmail.com

