
HYPERSIMPLICITY AND SEMICOMPUTABILITY IN THE

WEAK TRUTH TABLE DEGREES

GEORGE BARMPALIAS

Abstract. We study the classes of hypersimple and semicomputable
sets as well as their intersection in the weak truth table degrees. We
construct degrees that are not bounded by hypersimple degrees out-
side any non-trivial upper cone of Turing degrees and show that the
hypersimple-free c.e. wtt degrees are downwards dense in the c.e. wtt
degrees. Moreover, we consider the sets that are both hypersimple and
semicomputable, characterize them as the (bi-infinite) c.e. cuts of com-
putable orderings of N of order type ω+ω

∗ and study their wtt degrees.
We show that there are hypersimple degrees that are not bounded by
any hypersimple semicomputable degree, investigate relationships with
the join and look for maximal and minimal elements of related classes.

1. Introduction

We are interested in how hypersimplicity and semicomputability (in the
sense of Jocku sch [4]) relate to the weak truth table degrees. Hypersimple
sets where invented by Post as a solution to his problem (now called Post’s
problem) for the structure of truth table degrees. Then they where shown to
be a natural solution to Post’s problem for the weak truth table degrees as
well. So it is interesting to know the distribution of these natural solutions in
the weak truth table degrees. Moreover, weak truth table reducibility is the
most appropriate for the study of hypersimplicity given that its essense is
the existense of computable bounds (in the use of the relative computation)
and hypersimplicity of a set A is based on the same notion: a computable
sequence of bounds f(n) below which we get (strictly) more and more ele-
ments outside A. This connection becomes even more clear if we note that
elements outside A below computable bounds are also important in a weak
truth table reducibility since only elements not yet in A and below the use
can rectify computations.

It is known (Jockusch[4]) that every c.e. wtt degree has a c.e. semicom-
putable member while an old theorem of Post asserts that the complete wtt
degree contains no hypersimple set. The latter proof makes full use of the
completeness of the halting problem. In the next section we show that the
c.e. wtt degrees which are bounded by no hypersimple degree (a property of
the complete degree) are quite common. In particular, they occur outside

Date: March 2004.
Key words and phrases. Hypersimple, Semicomputable, Weak Truth Table Degrees.

1

2 GEORGE BARMPALIAS

any non-trivial cone of Turing degrees. The existence of such sets can be in-
tuitively justified as hypersimple sets have quite ‘sparse’ compliments while
a wtt reduction A ≤wtt W in general requires numbers of fixed segments of N

to stay outside W (in order to be used for the rectification of the functional
we are building, if needed).

Next, we show that the hypersimple-free c.e. wtt degrees are downwards
dense in the c.e. wtt degrees; i.e. every non-zero c.e. wtt degree bounds
a non-zero hypersimple-free c.e. wtt degree. We ask whether this can be
extended to full density and we conjecture a negative answer.Furthermore,
we show that for every hypersimple wtt degree there is one strictly above it.

In the final section we study the wtt degrees which contain sets that are
both hypersimple and semicomputable. We characterize this class as the
c.e. cuts of computable linear orderings of N of order type ω + ω∗ (where
ω∗ is the inverse of ω). This characterization will help a lot in the con-
structions involving such sets as we only have to deal with linear orderings
with the finite predecessor-or-successor property (that is, each number has
either finitely many predecessors or finitely many successors) and not with
a conjunction of hypersimplicity and semicomputability.

Using this, we point out that the wtt degrees of approximation represen-
tations for c.e. reals studied in Barmpalias[2, 3] are exactly the wtt degrees
of hypersimple semicomputable sets (in fact the actual classes of sets coin-
cide) and so some of the results there can be stated in terms of the present
paper and contribute to our study. For example, there is a hypersimple
wtt degree which is bounded by no hypersimple semicomputable degree (a
corollary of a result in [3]). Moreover, we can consider the c.e. wtt degrees
decomposed into two classes: the ones that are bounded by a hypersimple
semicomputable degree and the ones that are not. Since the first one is
downwards closed and the second is upwards closed we can think of them
as the bottom and upper part of the c.e. wtt degrees (with respect to this
decomposition). The two classes are non-trivial (as it follows from [3]) and
two very interesting questions are

(a) Are there minimal elements of the upper class?
(b) Are there maximal elements of the bottom class?

A positive answer to question (a) would mean the existence of a bottom
of a hypersimple semicomputable free upper cone in the c.e. wtt degrees
which bounds only elements of the first class. A positive answer to question
(b) would mean the existence of maximal hypersimple semicomputable wtt
degrees (in the sense that no degree above them is hypersimple semicom-
putable). In the last section we prove that there is no maximum hypersimple
semicomputable wtt degree (theorem 5). Moreover we construct two degrees
of the bottom class whose join belongs to the upper class. This shows that
the bottom class is not an ideal and the hypersimple semicomputable wtt
degrees are not closed under join. We wish to note that most of the proofs
in this paper do not rely on classical strategies for the satisfaction of the

HYPERSIMPLICITY AND SEMICOMPUTABILITY 3

requirements. For example, in theorem 5 we are building a set avoiding
a given initial segment in the c.e. wtt degrees but the usual Sacks coding
cannot be applied because of the nature of the sets we are dealing with. So
we needed to design a strategy based on the fact that we are dealing with
hypersimple semicomputable sets.

In the following we use standard notation and when we describe a con-
struction we assume a current value (corresponding to the current stage)
for each of the various parameters involved. All the degrees will be c.e. and
A ≤wtt B is indicated as ΦB = A;φ when we wish to make the algorithm
(functional) Φ and the computable use φ of the reduction explicit. Finally,
we use ℓ to denote the length of agreement of a potential reduction e.g.
ℓ(ΦW = A;φ) is the length of agreement of A ≤wtt W via the functional Φ
and with use bounded by the partial computable function φ.

2. Wtt c.e. degrees that are not bounded by hypersimple wtt

degrees

In this section we look at wtt c.e. degrees that are not bounded by hy-
persimple wtt degrees. These are degrees containing c.e. sets that cannot
be wtt-coded into hypersimple sets. In other words they are bottoms of
hypersimple-free upper cones in the wtt degrees.

Theorem 1. Wtt c.e. degrees that are not bounded by hypersimple wtt de-
grees occur outside any non-trivial upper cone of c.e. Turing degrees. For-
mally, if B is c.e. and non-computable then there exists A 6≥T B such that
the upper cone {w | w ≥ a} in the c.e. wtt degrees is hypersimple-free.

0

ab

T -cone

Hypersimple-free wtt-cone

Figure 1: Theorem 1.

Proof. Apart from A 6≥T B which can be achieved in a standard way (via
Sacks restraints) the requirements we have to satisfy are

QΦ,W : ΦW = A;φ⇒

{

∃(Dn)((Dn) sequence of consecutive segments of
N ∧ ∀n(W ∩Dn 6= ∅))

As usual, we can assume that φ is strictly monotone. The effective se-
quence (Dn) above will serve as a disjoint array witnessing that W is not

4 GEORGE BARMPALIAS

hypersimple. If ∀n(W ∩Dn 6= ∅) fails, we will be able to diagonalize success-
fully against ΦW = A;φ; this will be achieved via a ripple of diagonalizations,
the last of which is successful (i.e. is not rectified).

The strategy for QΦ,W consists of steps An, Bn, n ∈ N. The family
(An)n∈N enumerates (Dn). If at some stage we find that (Dn) does not
fulfil the purpose of its construction (i.e. Dn ⊆ W occurs for some n) we
turn to step Bn (for that particular n that witnessed the failure). This
Dn-failure step will start a ripple of diagonalizations, succeeding ΦW 6=
A;φ. Hence, either all An are performed (thus satisfying Q via its second
clause) and no Bn is activated, or finitely many An are performed, until a
single Bn-step is activated which (eventually) ends Q’s activity (satisfying
it through the negation of its first clause). Q will choose the witnesses for
its diagonalizations from a special set U ⊆ N disjoint from the special sets
of other requirements (e.g. U = N[e], the e-th column of N where e is the
index of Q under an effective ordering of the requirements). Let a1 = 1 and
I0 = ∅. The An, Bn steps are as follows:

An (Dn definition)
(1) Define In as the set of the next an unused (i.e. not in ∪i<nIi)

elements in U . This is the set of witnesses (agitators) of step
An. They have the potential to be used by Bn after an An-
failure. Their number |In| = an is defined by the previous step
An−1.

(2) Restrain In (from A) and wait until ℓ(ΦW = A;φ) > t, for all
t ∈ In.

(3) Define Dn := {maxDn−1 +1, . . . ,maxi∈In φ(i)−1} and an+1 :=
| ∪i≤n Di| + 1 (= maxφ(∪i≤nIi) + 1).

Bn (Dn-failure diagonalization loop)
(a) Wait for a Φ-expansionary stage.
(b) Put the least element of In ∩A into A and go to (a).

The Q-module operates as follows: it executes A1, A2, . . . but before mov-
ing to An it checks whether Di∩W 6= ∅ for all i < n. If this holds, it proceeds
to An, otherwise it proceeds to Bk for the least k with Dk ∩W = ∅. When
the Q module is called, it starts operating from where it last stopped, until
it meets a ‘wait’ condition which is not fulfilled or it finishes an An step (in
which case it stops at the beginning of An+1). We start from A1.

Now that we have defined the operation of Q, we explain why this strategy
works. First of all note that D1,D2, . . . are consecutive segments of N and
I1, I2, . . . are consecutive segments of U (the use-set of Q). The restraints
set on U are potentially infinite, but this is no problem as numbers in U are
only used by Q. The outcomes are as follows:

(1) when Q executes all An. Then, according to the module (Di) is an
infinite disjoint array with Di ∩W 6= ∅ for all i. Indeed, in order to
proceed to An+1 we must make sure that Di ∩W 6= ∅ for all i ≤ n.

HYPERSIMPLICITY AND SEMICOMPUTABILITY 5

(2) when we are permanently stuck in a ‘wait’ instruction in some An
step. In this case it is obvious that ΦW 6= A;φ and Q is satisfied.

(3) when the above fail, and so the Q-module passes control to some Bn
step. This must happen after Dn ∩W = ∅ (i.e. Dn ⊆ W) has been
noticed by the module.

In the third outcome, Bn will start a ripple of at most |In| diagonalizations
and we claim that the last one will be impossible to rectify. In other words
that ΦW 6= A;φ is a certain final outcome. Indeed, the only rectification
codes (i.e. numbers that can rectify ΦW computations) for any agitator in
In are in N ↾ maxφ(In) and so they are not more than maxφ(In). But
N ↾ maxφ(In) = ∪i≤nDi and since Dn ⊆ W any rectification code (for
witnesses in In) is in ∪i<nDi = N ↾ maxφ(In−1). So if Rn is the set of these
codes,

|Rn| = maxφ(In−1) < maxφ(In−1) + 1 = an = |In|.

Since for each In-enumeration (into A, at a Φ-expansionary stage) at
least one Rn-enumeration (into W) is needed for a new expansionary stage
to come, there will be a (final) In diagonalization which is not rectified.
This means that the module will be stuck on (a) of Bn unable to obtain
an expansionary stage. So ΦW 6= A;φ and the third outcome satisfies Q.
Hence the module is successful.

The construction for the satisfaction of the Q requirements is: at stage s
run successively the modules of Q0, . . . ,Qs. The satisfaction of the require-
ments follows by the analysis of outcomes we discussed above. In particular,
there is no injury. If we wish to add the requirement A 6≥T B for some given
c.e. non-computable B we just need to attach the Q requirements in the
usual Sacks-restraint argument (e.g. on a tree) for the satisfaction of:

NΦ : B 6= ΦA.

There is no non-trivial interaction of strategies apart from those discussed
above and those in the classical Sacks argument. Each Q strategy will oc-
cupy a (1-branching) node on the tree and will only be asked to respect a
finite amount of A-restraint. So the only modification in its strategy is to
choose I-witnesses larger than this finite (or at least with lim inf < ∞) re-
straint. The verification of this construction follows the lines of the classical
Sacks argument and our analysis of outcomes for the Q-requirements. �

In [3] we constructed a hypersimple set which is not wtt-bounded by any
cut any computable ordering of N of order type ω + ω∗. By theorem 4 of
section 5 this implies (in fact, is equivalent to)

Corollary 1. . There is a hypersimple set which is ≤wtt-bounded by no set
which is both hypersimple and semicomputable.

We would like to make an interesting comparison between the Q-strategy
in the proof of theorem 1 with the strategy employed in [3] in order to

6 GEORGE BARMPALIAS

prove the previously mentioned version of corollary 1. The crucial difference
is that in the latter, the A-restraint on columns of N (imposed by a fixed
requirement) is only finite; and this is what allows us to make A hypersimple.
Here is how we achieve this: our typical requirement is

Q′
Φ,W,ψ : ΦW = A;φ⇒

{

W is not the left cut of the computable
ordering of N of order type ω + ω∗ defined by ψ

Here ψ is the function possibly defining such an ordering ≺ on N (in the
sense that ψ(n,m) = 1 ⇐⇒ n ≺ m) with left cut W ; Φ runs over the
partial computable functionals, φ,ψ over the partial computable functions
and W over the c.e. sets. In a family of steps (An) (similar to the ones
we used above) we enumerate a set D (instead of an array as in the above
argument) intended to be W . If at some point D ∩W 6= ∅ we are able to
diagonalize through a Bt step in a way analogous to the above proof. This
way we are able to satisfy the following requirements:

Q′′
Φ,W,ψ : ΦW = A;φ⇒







W is not the left cut of the computable
ordering of N of order type ω + ω∗ defined by ψ
or W = D (so W is computable).

The satisfaction of all Q′′ imply that A is non-computable. Using this, Q′′

implies Q′. Moreover, the only way to have infinite restraints on Q′’s column
is to let the sequence (An) act forever. According to that construction,
this implies that D = W and so W is computable. It also implies that
ΦW = A;φ and hence the outcome ‘D = W ’ is never realized (so we call
it pseudo-outcome). Hence no sequence (An) acts forever and the restraint
on columns of N imposed by any fixed requirement is only finite. Using this
fact we are able to show that the hypersimplicity requirements are satisfied
as well.

So the point is that in [3], due to the special nature of the requirements
we were able to force a stop on the (An) routine (and so, the restraint it
imposes to the lower hypersimplicity requirements) whereas in the proof of
theorem 1 we are not.

3. Hypersimple-free c.e. wtt-degrees

The next result shows that the c.e. wtt hypersimple-free degrees are more
common than the ones studied in the previous section. In fact, we show
their downward density in the c.e. wtt degrees.

Theorem 2. The hypersimple-free c.e. wtt-degrees are downwards dense in
the c.e. wtt-degrees. That is, if c > 0 then there is a c.e. hypersimple-free a

such that 0 < a < c.

Proof. By the density of the c.e. wtt-degrees it is enough to show that for
every c > 0 there is a hypersimple free a with 0 < a ≤ c. Suppose a non-
computable c.e. set C. We are going to construct a non-computable c.e.

HYPERSIMPLICITY AND SEMICOMPUTABILITY 7

A ≤wtt C and equivalent to no hypersimple set. The requirements (apart
from the permitting A ≤wtt C) are:

QΦ,Ψ,W : ΦW = A;φ and ΨA = W ;ψ ⇒







∃(Dn)((Dn) sequence of
consecutive segments of N ∧
∀n(W ∩Dn 6= ∅))

We also have the non-computability requirements

PΦ : A 6= Φ.

We start off with the following atomic module for QΦ,Ψ,W . The idea
behind this strategy is similar to the one of theorem 1: assuming ΦW = A;φ
we enumerate a strong array (Dn) and try to achieve W ∩ Dn 6= ∅ for all
n. The definition of each Dn is such that if we all of its elements appear in
W later on (giving W ∩Dn = ∅) then we are able to ensure ΦW 6= A;φ by
diagonalizing. But since we want A ≤wtt C such diagonalization must be
C-permitted. So since C is arbitrary, in general it will not allow the number
of diagonalizations that steps Bn performed in theorem 1. To avoid this
difficulty we modify the enumeration of (Dn) using the additional hypothesis
ΨA = W ;ψ that we are given and we make sure that if Dn ⊆W occurs then
we are able to destroy ΦW = A;φ with a single diagonalization. Hence,
every Dn definition is associated with a diagonalization witness a which will
be used if and when Dn ⊆W occurs.

The C-permitting is represented formally by a function (in other words, a
functional with empty oracle) ∆ which tries to compute C. Let U an infinite
computable set especially for the use of Q strategy. Below, s is the current
stage and any parameters mentioned in the construction are supposed to
have a current value.

An (n-attack setup) Find a least a < s such that a ∈ U −A and
– ℓ(ΦW = A;φ) > a
– for all x ∈ ∪i<nDi(ψ(x) < a)
and define an = a and Dn = {max∪i<nDi + 1, . . . , φ(an)}.
When An is run Di for i < n are already defined. If Dn ⊆ W

later on, we will be able to diagonalize successfully by an ց A and
imposing a finite restraint on A (in order to preserve a segment of
W).

Bn (D-failure step; in particular when the D-enumeration done in An
has proved wrong)

Consider an which was defined in step An.
(a) Wait until ℓ(W,ψA;ψ) > x for all x ∈ ∪i<nDi. Restrain A ↾ v

where v is the use of these computations.
(b) Express desire for an ց A: define the functional ∆ ↾ an = C ↾

an.
It will be v < an as in step An. If we are permitted to put an ց A,
this enumeration respects the A restraint we imposed in (a) above.

8 GEORGE BARMPALIAS

This diagonalization can only be rectified via a W -enumeration be-
low Φ(an). But no such enumeration can happen with elements in
∪i<nDi due to the A restraint we impose. Hence it must be with
elements in Dn; however these are already in W (this made us start
step Bn) and so the disagreement we create is permanent.

The parts An, Bn above are only a piece of the whole Q-strategy. We call
them AB-routine. A recursive iteration of AB -routines (AB(0), AB(1), . . .)
constitutes the Q-strategy. We explain how a single AB-routine works. It
enumerates its own array (Dn), which is a sequence of consecutive segments
of (and potentially covering) N, while ∆ belongs to all AB-routines. It starts
by performing successively the steps A1, A2, . . . and at each Ai it defines Di.
It also finds a suitable ai which is a witness for a ‘back-up diagonalization’
planned in case Di ⊆W later on, i.e. in case the guess made in Ai is wrong.

After that Ai has been completed and in order to pass to Ai+1 we check
whether Dk ⊆ W holds for some k ≤ i. In other words, whether all the
W -guesses we made so far (via (Dk)) look correct. If yes, then we can
proceed to Ai+1 in order to push (Dk) further. Otherwise for the least n
with Dn ⊆W we pass control to Bn. No more steps apart from Bn will ever
be performed in this AB-routine. Bn activates the back-up diagonalization
prepared in An: it suggests (at some later suitable stage) an as a witness
for ΦW 6= A;φ and it also restrains the W -use of the computation (even
after a possible an ց A). Note that in the atomic module above there are
‘wait’ instructions. Taking into account that we may have to wait forever,
the outcomes of an AB-routine are:

1
AB

As we go through A1, A2, . . . we get stuck in a ‘wait’ instruction of
some Ai and stay there forever. According to the ‘wait’ conditions,
this implies the satisfaction of Q.

2
AB

Before passing to a next Ai we collapse onto a Bn-step. This does not
automatically imply satisfaction of Q but it advances the functional
∆ (which belongs to all AB-routines). If the ∆-axioms enumerated
by Bn are later shown to be wrong, C will permit an and Q will be
permanently satisfied.

3
AB

We go through A1, A2, . . . with no permanent distraction. Under
this outcome the AB-routine produces an infinite disjoint array (Dn)
with Dn ∩W 6= ∅ for all n, thus proving that W is not hypersimple
(and Q is satisfied).

Turning to the whole Q-strategy, we start executing AB(1) (which is
identical to the typical AB-routine described above) and continue as follows
(in an inductive mode). If and when AB(i) has come to an end (in the

sense of outcome 2
AB

) and ∆ looks correct, we start AB(i + 1) with the
additional (but not essential) restriction that all the at-witnesses chosen
during its At-steps are larger than the witnesses already suggested by the
AB(m) for m < i, when they terminated (this ensures that every time we

HYPERSIMPLICITY AND SEMICOMPUTABILITY 9

pass to a higher AB-routine, ∆ has grown longer). If ∆ does not look
correct, we finish with the Q-termination routine:

(a) Let n = µi[∆(i) 6= C(i)] and a the least witness > n suggested at a
previous AB-termination.

(b) Put aց A thus satisfying Q

(the disagreement will be preserved as explained above). From the above,
any enumeration into A is C-permitted and so A ≤wtt C. Note that as
we go through AB(1), AB(2), . . . , we build on more and more restraints on
A. If C is indeed non-computable, ∆ must fail and so at some point the
Q-termination routine will satisfy Q. The outcomes of the entire Q-strategy
are:

1
Q

As we go through AB(1), AB(2), . . . we get stuck in a ‘wait’ instruc-
tion of some AB(i) and stay there forever. Or some AB(i) never
stops running. Either case implies the satisfaction of Q as before,
and also that the overall A-restraints that Q imposes are bounded
(i.e. finite).

2
Q

A ∆-check finds ∆ wrong and we enter the Q-termination routine.
Again Q is satisfied as explained above.

3
Q

We never stop running AB(1), AB(2), This means that ∆ is
total and correct, so that C is computable.

These outcomes show that our strategy is successful. Moreover it is not
difficult to see that all Q strategies can work together with only a finite
injury effect. Whenever some Q act it initializes all lower requirements and
probably increases its A-restraints. But according to the outcomes above it
acts only finitely often (imposing a final finite A-restraint) and so it allows
lower priority requirements (which respect the higher priority A-restraint)
to be satisfied. This also shows that the P requirements can be added with
the same finite injury effect. We reserve special sets P for the witnesses of
each P and let them act according to the usual non-computability strategy:
choose a witness larger than the restraints of higher priority Q requirements,
wait until Φ(t) ↓= 0 and put t ց A. When P acts it initializes all lower
priority requirements. When itself is initialized, it starts anew (with a new
witness).
Construction. At stage s let the highest Q or P requirement (with index
< s) requiring attention act. A Q requires attention is one of its AB-
routines requires attention; and this happens for AB(i) if all higher AB
routines have finished a B-step and itself is ready to move on a further step
(after we successfully complete a ∆-correctness check, in case AB(i) is at
the beginning). Once an AB-routine ends up in a B-step it starts carrying
the responsibility for the correctness of a segment of ∆ (namely from the
threshold marking the arguments on which the higher AB-routines have
enumerated axioms, up to the largest argument for which AB(i) enumerated
computations). If a ∆-correctness check fails, we go back to the AB-routine

10 GEORGE BARMPALIAS

which has the relevant responsibility, and in particular its B-step which
enumerated the axioms.

This concludes the description of the construction. For the verification
we note that (as explained above) any Q acts at most finitely many times
and so all requirements can work together with the standard finite injury
effect. The satisfaction of a single Q is already explained above and this is
enough for the verification as there are no non-trivial interactions between
the Q requirements. �

It is natural to ask whether downward density can be extended to full
density of the hypersimple-free wtt degrees in the c.e. wtt degrees. If we
start with an interval B <wtt C (instead of just ∅ <wtt C) one can see that
the B-coding into A that we are constructing forces the need for multiple
enumeration (similar to the diagonalization ripple of theorem 1) for the
satisfaction of (the analogue of) Q; and this requires multiple permitting by
C which is not always available. So we conjecture that a non-density result
may be possible.

4. Hypersimple Sets in the Wtt degrees: no maximal elements

The following theorem shows that there are no maximal hypersimple wtt
degrees i.e. for every hypersimple wtt degree there is one strictly above it.

Theorem 3. If W is hypersimple, there exists a hypersimple set A such
that W <wtt A.

Proof. We have seen in the previous sections that there is a certain type
of conflict when we try to construct a hypersimple set A above a given W ,
and sometimes this makes such a construction impossible. We show now
that when we have the information that W is hypersimple, this conflict is
managable and a construction is possible. If Dn is an effective enumeration
of all finite sets and (Φ, φ) runs over an effective enumeration of all partial
computable functionals/functions then the following requirements guarantee
the result:

Q : W ≤m A

PΦφ : ΦW 6= A;φ

Rφ : ∃n(Dφ(n) ⊆ A) ∨ Dφ not a strong array.

We say that Dφ is a strong array if φ is computable and for n 6= m,
Dφ(n)∩Dφ(m) = ∅. Notice that Q asks for something stronger than we really
need, namely m-reducibility instead of wtt. Fix a computable c : N → N

which is 1-1 and such that N − c(N) is infinite (e.g. c(n) = 2n+ 1). We will
arrange that

n ∈W ⇐⇒ c(n) ∈ A

HYPERSIMPLICITY AND SEMICOMPUTABILITY 11

thus satisfying Q. Assume a priority list where Q has highest priority
and the infinitely many PΦ, Rφ follow in an effective way (based on the
effective enumeration of (Φ, φ) that we assumed earlier). Each of PΦ, Rφ

will be finitary (i.e. act finitely often) and any A-enumeration the do must
not bring Q in difficult position. An A-enumeration affects Q only when it
involves c-codes, i.e. elements in c(N).
PΦφ strategy. As usual, we can assume that φ is strictly monotone. We are
going to attack P by steping on the hypersimplicity of W : we construct a
strong array (Fn) which tries to show that W is not hypersimple, in such a
way that when it fails (i.e. Fn ⊆W) we are able to diagonalize successfully
(i.e. in a way that makes a final dissagreement unavoidable) against ΦW =
A;φ. This will be achieved via a ripple of diagonalizations, the last of which
is successful (i.e. is not rectified).

The strategy consists of steps An, Bn, n ∈ N. The family (An)n∈N enu-
merates (Fn). If at some stage we find that (Fn) does not fulfil the purpose
of its construction (i.e. Fn ⊆W occurs for some n) we turn to step Bn (for
that particular n which witnessed the failure). This Fn-failure step will start
a ripple of diagonalizations, succeeding ΦW 6= A;φ. Since W is hypersimple,
only finitely many An will be performed, and at some point a single Bn-step
will be activated which (eventually) ends Q’s activity leaving it satisfied.
For the diagonalizations we will choose witnesses from N − c(N) so that we
dont interfere with Q. Let a1 = 1, I0 = ∅ and assume a constant restraint r
from the higher priority requirements. The An, Bn steps are as follows:

An (Fn definition)
(1) Define In as the set of the next an unused (i.e. not in ∪i<nIi)

elements in N − c(N), greater than r and not yet in A. This
is the set of witnesses (agitators) of step An. They have the
potential to be used by Bn after an An-failure. Their number
|In| = an is defined by the previous step An−1.

(2) Restrain In (from A) and wait until ℓ(ΦW = A;φ) > t, for all
t ∈ In.

(3) Define Fn := {maxFn−1 + 1, . . . ,maxi∈In φ(i)− 1} and an+1 :=
| ∪i≤n Fi| + 1 (= maxφ(∪i≤nIi) + 1).

Bn (Fn-failure diagonalization loop)
(a) Wait for a Φ-expansionary stage.
(b) Put the least element of In ∩A into A and go to (a).

The P-module operates as follows: it executes A1, A2, . . . but before mov-
ing to An it checks whether Di∩W 6= ∅ for all i < n. If this holds, it proceeds
to An, otherwise it proceeds to Bk for the least k with Dk ∩W = ∅. When
the Q module is called, it starts operating from where it last stopped, until
it meets a ‘wait’ condition which is not fulfilled or it finishes an An step (in
which case it stops at the beginning of An+1). We start from A1.

12 GEORGE BARMPALIAS

Now that we have defined the operation of P, we explain why this strategy
works. First of all note that D1,D2, . . . are consecutive segments of N. The
outcomes are as follows:

(1) when P executes all An. Then, according to the module (Fi) is an
infinite disjoint array with Di ∩W 6= ∅ for all i. This is impossible
since W is hypersimple.

(2) when we are permanently stuck in a ‘wait’ instruction in some An
step. In this case it is obvious that ΦW 6= A;φ and Q is satisfied.

(3) when the above fail, and so the Q-module passes control to some Bn
step. This must happen after Dn ∩W = ∅ (i.e. Dn ⊆ W) has been
noticed by the module.

In the third outcome, Bn will start a ripple of at most |In| diagonalizations
and we claim that the last one will be impossible to rectify. In other words
that ΦW 6= A;φ is a certain final outcome. Indeed, the only rectification
codes (i.e. numbers that can rectify ΦW computations) for any agitator in
In are in N ↾ maxφ(In) and so they are not more than maxφ(In). But
N ↾ maxφ(In) = ∪i≤nFi and since Fn ⊆ W any rectification code (for
witnesses in In) is in ∪i<nFi = N ↾ maxφ(In−1). So if Kn is the set of these
codes,

|Kn| = maxφ(In−1) < maxφ(In−1) + 1 = an = |In|.

Since for each In-enumeration (into A, at a Φ-expansionary stage) at
least one Kn-enumeration (into W) is needed for a new expansionary stage
to come, there will be a (final) In diagonalization which is not rectified.
This means that the module will be stuck on (a) of Bn unable to obtain an
expansionary stage. So ΦW 6= A;φ and the third outcome satisfies P. Hence
the module is successful. Also, note that in each of the two realizable out-
comes above the restraints that P imposes (to lower priority requirements)
are finite.
Rφ strategy. Although we were able to find a strategy for P which does
not interfere with Q, it is not possible to do the same with R, since hy-
persimplicity requirements can not afford to choose their witnesses from a
pre-arranged computable set. So we have to allow them to enumerate into
elements of c(N) as well and to avoid the destruction of Q we will take ad-
vantage of the hypersimplicity of W once more. Based on the given strong
array (Dφ(n)) (which tries to show that A is not hypersimple) we will con-
struct a strong array (Gn) which tries to show that W is not hypersimple.
When (Gn) fails, i.e. Gk ⊆W for some k, we will cause a (Dφ(n)) -failure (i.e.
Dφ(k) for some k) without creating any potential problems to Q. Note that
(Gn) will definitly fail since W is given hypersimple. To be more specific,
we simply define

Gn := {k | c(k) ∈ Dφ(n)}.

HYPERSIMPLICITY AND SEMICOMPUTABILITY 13

Now since W is hypersimple, some Gn ⊆W at some stage. But then Rφ

can be satisfied by putting into A only the elements in Dφ(n) − c(N); indeed,
c(N) ∩Dφ(n) is already in A by Q’s module and Gn ⊆ W . In other words
we satisfy R without enumerating into A any c-codes (such an enumeration
is left to Q).
Construction. In order to let all the strategies work together we only need
to make sure that lower priority requirements respect the restraint r set
by higher ones. Note that only P impose restraints. Whenever a P or R
receives attention we initialize all lower priority P-requirements. Every P
chooses witnesses greater than the restraint r and restrains them; R only
enumerates into A a Gn with all members greater than r. A P requirement
requires attention when its module is ready to move to the next step; and
a P requirement when there is a Gn with Gn ⊆ W and minGn > r. The
construction is: at stage s

• For every n, if n ∈W (and c(n) 6∈ A) put c(n) ց A.
• Find the least P or R which requires attention in the first case run

the relevant module (from where it last stopped) and in the latter
find the least n with Gn ⊆ W , minGn > r and enumerate the
elements of Dφ(n) into A. Initialize the lower priority requirements.

The satisfaction of the requirements follows by the analysis of outcomes
we discussed above and an application of the finite injury method. �

5. Hypersimple Semicomputable Sets in the Wtt degrees

In the previous sections we dealt with the notion of hypersimplicity and
now we consider how semi-computability (in the sense of Jockusch[4]) relates
to the wtt c.e. degrees along with hypersimplicity. We recall the following
definition:

Definition 1 (Jockusch[4]). A set A is semicomputable if there is a com-
putable f such that

• f(x, y) ∈ {x, y}
• x ∈ A ∨ y ∈ A⇒ f(x, y) ∈ A.

Semicomputable sets are known to be exactly the cuts of computable
linear orderings of N and as Jockusch[4] points out,

Proposition 1 (Jockusch[4]). Every c.e. wtt (and indeed tt) degree contains
a c.e. semicomputable set.

So it makes sense to study the wtt degrees of sets that are both hy-
persimple and semicomputable. First we provide a characterisation of the
hypersimple semicomputable sets, which will give a better intuition in our
constructions.

Theorem 4. A set is hypersimple semicomputable iff it is the left c.e. non-
computable cut of a computable ordering of N of type ω + ω∗.

14 GEORGE BARMPALIAS

Proof. It will be clear that ‘left’ can be replaced by ‘right’. As mentioned
above, it is well known that semicomputable sets are exactly the cuts of
computable orderings of N. Also, it is not difficult to show that if a cut of a
computable ordering of N of type ω + ω∗ is c.e. non-computable, then it is
hypersimple (see [2]1). Hence one direction of the theorem follows easily.

For the other, assume that A is semicomputable and hypersimple. Then
it is the left cut of a computable ordering ≺ of N. Assume an effective
enumeration As of A (with maxAs < s) and define the set B as follows:

stage s. If s lies on the ≺-left of some element in As, enumerate sց B.

Obviously B is a computable subset of A. It is the set of elements which
we know they belong to A, by the time they are enumerated in the standard
enumeration of N. We will define a new order ≺∗ of N which is of type
ω + ω∗ and its left cut is A. In fact, ≺ and ≺∗ will only differ on B.

The intuition is that in order to transform the order type of ≺ to ω +
ω∗ it is sufficient (and necessary) to ensure that every element has either
finitely many predecessors or finitely many successors. Since A is infinite,
any element of A has infinitely many ≺-predecessors and so we must ensure
that it has only finitely many ≺∗-successors. Similarly, for the elements in
A we must ensure that they have only finitely many predecessors, and we
do this by reordering some of them.

We view the construction of ≺∗ as mapping (placing) natural numbers
into a dense line like Q. The order of the rationals induces ≺∗ via the
mapping. In fact, we already have such a mapping with respect to ≺. Thus
we only have to move some naturals on the line, and this re-placement will
define ≺∗. At stage s it is enough to specify the position of s with respect
to the numbers in N ↾ s. Here is the construction. Run the construction of
B as above and at stage s, if s ց B we place s between the two ≺-largest
elements in As−B (and larger than every B-element currently in there). If
not, we leave it in its old position.

Note that ≺ is a (computable) order; also, we only move elements in the
left cut A of ≺ and the new positions remain in A. So A is a left cut of
≺∗ as well. Now if there was an element in A with infinitely many ≺∗-
successors, there would be an infinite c.e. subset of A. This contradicts the
hypersimplicity assumption. The only thing left to show is that any element
of A has finitely many ≺∗-predecessors. Indeed, by induction every element
in A has a ≺∗-successor in A. If t ∈ A and t ≺∗ k, every s > max{t, k} will
be ≺∗-greater than t. This concludes the proof. �

What we did in the above construction is to spot elements which are
‘born’ too low (i.e. too left on the line) and lift them as much as possible
within the least initial segment of the line which contain all elements of A (we

1in terms of that paper, theorem 4 can be restated as ‘semicomputable hypersimple
sets are exactly the approximation representations (of c.e. reals)’.

HYPERSIMPLICITY AND SEMICOMPUTABILITY 15

sometimes call this ‘black area’). The set B contains the ‘low-born’ elements
(of the black area). Theorem 4 shows that the approximation representations
(or simply representations) for c.e. reals studied in Barmpalias[2] are just
the subsets of N that are both hypersimple and semicomputable. Below
we will often say ‘representation’ instead of ‘hypersimple semicomputable
set’. Also, a representation or hypersimple semicomputable wtt degree is
one that contains representations. The reason why we use this term is that
technically speaking we do not see these sets as a combination of the two
classical notions but rather as sets with an easily identifiable and intuitively
clear structure (as cuts of computable orderings of a special type). The
building of a representation will be a construction of a computable linear
ordering of type ω + ω∗ with a simultaneous infinite enumeration of its left
cut (roughly as in the proof of theorem 4).

5.1. No greatest element for the hypersimple semicomputable wtt

degrees. It is natural to ask whether there is a ‘universal’ c.e. cut of a
ω + ω∗ computable ordering of N in the sense that it ≤wtt-bounds every
other of the same kind. We give a negative answer by showing that there is
no maximum hypersimple semicomputable wtt degree, i.e. one that bounds
all the others.

Theorem 5. There is no greatest hypersimple semicomputable wtt degree.

For the proof we assume we are given a representation A and we construct
a representation B such that B 6≤wtt A. We want to satisfy the following:

QΦ : ΦA 6= B;φ

Here Φ runs over the partial computable functionals and φ over the partial
computable functions (intended as the use of Φ). The plan is to diagonalize
against ΦA = B;φ in a way that is impossible (for the opponent) to rectify
(by A-enumeration). For this we will need to diagonalize a number of times,
of which the first one (with witness b in the module below) has a special role.
We choose b along with a finite number of other witnesses so that after the
rectification of bց B the A-enumeration triggered (the set D in the module
below) has left less rectification points with respect to our other witnesses
than the number of these very witnesses. This guarantees that when we
start successive diagonalizations with the other witnesses (at expansionary
stages) at least one of them will be impossible to rectify. For this plan the
fact that A is a representation is crucial.

We view A as the left bi-infinite cut of a computable ω+ ω∗ ordering <A
of N; so we are given <A and an enumeration of A. The construction will
define a computable ordering <B of N of the same type and simultaneously
enumerate its unique left bi-infinite cut in B. We view the definition of
<A, <B as taking place on an A-line and B-line respectively (since they are
linear). The enumeration of a cut is represented graphically by a c.e. black
area (see figure 2) which is continuously expanding and eventually covers

16 GEORGE BARMPALIAS

the part of the line that contains elements in the cut. The elements of N are
also called points when they are mentioned in relation to the A or B-line.
Another way to say m <A n for two numbers m,n is that m is on the left of
n (or n on the right of m) on the A-line (see figure 2). At any stage only a
finite segment of N is <A (or <B) -ordered and so, as we say, the numbers
in this segment have a position on the corresponding line.

n

m

t

k
black area

Figure 2: Construction of a c.e. cut of a ω + ω∗ computable ordering.

In the module below we use the symbols ∞A, ∞B which refer to the A
and B lines respectively. These have the properties n >A ∞A, n 6≤A ∞A

for all n, ∞A /∈ A and similarly for B. Intuitively they are a non-standard
point on the corresponding line, on the left of any standard one and we
use them just to make our description simpler and more uniform. To save
space, we talk about the strategy as if there is potential for Q to work with
other similar requirements. However it can also be seen as the module of
Q working in isolation. We use the origins oA, oB (as parameters of Q) on
the A,B lines respectively which are the points defining the segments on
these lines involved in higher priority requirements’ activity (if any). So Q
uses points on the left of the origins and it also assumes that oA /∈ A, i.e.
that no point on the A-line related to a higher requirement enters A. If this
assumption is false it will be initialized.

5.1.1. QΦ-module.

(1) Define the origin oB of this requirement on the B-line as the leftmost
point currently outside B (if such doesn’t exist, let oB = ∞B). Put
the next number b without a position on the B-line, to the left of
oB . Set IB = {b}.

Define the origin oA of this requirement on the A-line as the left-
most point in the IA-intervals of higher requirements (if they don’t
exist or they are empty, let oA = ∞A). Dynamically define the set
IA for this requirement as:

IA = {i | i < max
k∈IB

φ(k) ∧ i <A oA} −D −A

where D is dynamically defined = {i | i ≤A minA{t < φ(b) | t /∈
A}}; minA is the <A-minimum and minA ∅ = ∞A.

The dynamic definition of a parameter means that whenever men-
tioned it is (re)defined by applying the definition using the current
values of any parameters involved. The set IB contains the agitators
that we plan to use for our diagonalizations. D is the set of numbers

HYPERSIMPLICITY AND SEMICOMPUTABILITY 17

that will enter A if the diagonalization bց B of the next step is recti-
fied. So IA is the set of elements that can rectify IB-diagonalizations
after bց B has been rectified.

(2) Wait until ℓ(ΦA = B;φ) is greater than all elements of IB and ask:
is |IB | > |IA|?

• Yes: Put b ց B and redefine dynamically IA := IA − A (the
right hand side IA having the value it was last assigned); go to
step 4.

• No: go to step 3.
If the ‘yes’ clause holds, then we can start the diagonalization ripple
of step 5 and IA indeed contains the only rectification codes we have
to deal with. After b ց B, D plays no role in the definition of IA
and so we fix the latter. The redefinition IA = IA −A is just a way
to express that whenever a point of IA enters A, then it exits IA (not
being a rectification point anymore).

(3) Put the least number m not having a position on the B-line, on
the right of b and on the left of any other point currently on the
line and >B b (where >B is the ordering of N associated with the
representation B we are constructing). Define

IB := IB ∪ {m}

and go to step 2.
(4) (diagonalization loop)

(a) Set IB = IB −B and wait until the next expansionary stage.
(b) Put the leftmost point of IB into B (and expand the black area

up to that point) and go to (a).

Note that in contrast to IA’s dynamic definition, IB has the value it was
last assigned. IA is not necessarily an interval in the A-line (in the sense
of the set of points contained in between two points) but it is an interval
restricted to numbers in an initial segment of N. However IB is an interval
(on the B-line).

5.1.2. Analysis of Outcomes. By its definition, IA will only be finite in the
long run (due to the fact that A is given as a representation); and since we
keep putting elements into IB , at some point (having enough expansionary
stages) we will exit step 2 through the ‘yes’ clause. After step 4(a) every
rectification point for any of our IB witnesses will be in IA. And since
|IB| > |IA| (which will always hold since a IB-diagonalization can only be
rectified by a IA-enumeration) the loop of step 4 will terminate on (a) due
to the lack of an expansionary stage. So Q is satisfied.

5.1.3. Construction. For every requirement, if its origin oA has entered A,
initialize all higher priority requirements (i.e. initialize their module and
enumerate their IB set into B). Otherwise consider the highest priority Q

18 GEORGE BARMPALIAS

requiring attention (i.e. ready to perform the next step) and activate it;
initialize all the lower priority requirements.

5.1.4. Verification. We prove by induction that every Q ceases to require
attention and is satisfied with IA, IB ending up either undefined (if Φ;φ
partial) or fixed finite sets. Suppose that all higher priority requirements
than Q are satisfied in this way (and beyond a least stage s0 they don’t
require attention). This means that oA of Q is eventually settled on a final
value outside A.

For a contradiction suppose that ΦA = B;φ. Step 1 will run and we claim
that the loop of steps 2-3-2 will produce what we call a saturation state i.e.
a stage that |IB | > |IA|. Indeed, consider the final value of t = minA{t <
φ(b) | t /∈ A}. If it is ∞A then IA = ∅ and the inequality holds. Otherwise,
only finitely many points can be in [t,∞A) since A is representation. So
IA is finite and by successively adding elements in IB we will eventually get
|IB| > |IA|.

From now on every diagonalization using elements of IB requires A-
enumeration of elements in IA; indeed, it holds for the diagonalization with
b, and any other point below the use of some IB computation either belongs
to D (as it was defined before executing the ‘yes’ clause of step 3) or IA, or
it is ≥A oA. But by the time the b-diagonalization is rectified, D ⊂ A and
by hypothesis no element ≥A oA is ever going to enter A. This means that
any subsequent rectification must be done with elements in IA. Now that
we found a suitable IA, we fix it except for the fact that we update it by
deleting points that have entered A (and so, are useless for rectification).

The (a)-(b) loop of step 4 will keep on reducing IB ensuring that for
each IB enumeration at least one IA-enumeration happens. And elements
in IB can only be enumerated by Q (at expansionary stages) due to the
hypothesis (the rest of higher priority requirements) and the fact that lower
priority requirements choose IB-witnesses on the left of those of higher ones.
So at some point |IA| = 0 while IB 6= ∅ and a further diagonalization with
an IB witness will be impossible to rectify. So ΦA 6= B;φ, a contradiction.
Since ΦA 6= B;φ, after a certain stage there will be no more expansionary
stages. So IB will stabilize and IA as well (by its definition).

5.2. Hypersimple Semicomputable wtt degrees and the join. Since
we are studying the class of hypersimple semicomputable wtt-degrees it is
natural to ask whether they are closed under join. We show that they are
not; moreover, we construct two hypersimple semicomputable sets such that
any set which can wtt-compute both of them, is not hypersimple semicom-
putable.

Theorem 6. There are hypersimple semicomputable A,B such that no W
≥wtt A⊕B is hypersimple semicomputable.

Let A ⊕ B = {〈a, b〉 | a ∈ A ∧ b ∈ B} where 〈., .〉 is a standard pairing
function. We want to satisfy the following:

HYPERSIMPLICITY AND SEMICOMPUTABILITY 19

QΦ,W,θ : W is representation via θ ⇒ ΦW 6= A⊕B;φ

Here Φ runs over the partial computable functionals, W over the c.e. sets
and θ over the partial computable functions. The phrase ‘W is a represen-
tation via θ’ means that W is the left cut of the computable ordering of N

determined by θ (in the sense that n ≺θ m ⇐⇒ θ(n,m) = 1) and this
ordering has type ω + ω∗ (ω∗ is the inverse of ω). Here we use the fact that
representations are exactly the left cuts of such orderings in order to test
this property over the list of c.e. sets. In the following when we talk about
a particular requirement, θ will only be implicit; i.e. we will talk about a
point (i.e number) t being ‘on the left’ of another k (on the W -line) meaning
that t ≺θ k (and analogously for ‘on the right’).

Of course if we only had one representation instead of A,B above, the
satisfaction of the requirements would be impossible (and it is instructive
to see why). The problems in that situation can be solved if we share
our diagonalization witnesses between two sets. The strategy is to gather
enough suitable witnesses so that if W is indeed a representation (via θ)
and we put each witness into A⊕B in successive (Φ-) expansionary stages,
the W -enumeration we will cause (needed for rectification of ΦW) is enough
to guarantee impossibility of rectification by the time we enumerate the
last witness. If W is a representation, we can trigger massive enumerations
into W with just one diagonalization since if a point enters W , all points
on its left enter W as well; and if t 6∈ W almost all points are on the left
of t. For this plan, the first of our witnesses is the one which triggers a
massive W -enumeration and the others just need a usual W -enumeration
(i.e. one element below the use). Since we definitely want to diagonalize
with a particular witness t before all the others and the sets we are building
must be representations, we should either

(1) enumerate t in one of A,B and the rest in the other; or
(2) all in the same set but in this case t must be on the left of all the

other witnesses (because otherwise its enumeration will cause other
witnesses to be enumerated as well, before they are used).

If W is not a representation (a fact that we cannot predict effectively) the
above plan does not work, simply because we may not find suitable witnesses,
able to trigger desired W -enumerations (but Q is satisfied in a trivial way).
However, this situation may induce an infinite search for witnesses, and if we
choose to act as in (2) we may destroy the representation structure of A or
B. So we choose to follow (1) and this is why we need to use diagonalization
witnesses from two sets (A and B) instead of one.

We use A for our initial witness and B for the rest ones. In this situation
we do restrain our A-witnesses but we don’t restrain the B ones unless we are
sure we have got enough (to start the diagonalization ripple). So the ‘infinite
search’ described above will have no significant effect in the construction
(e.g. in terms of restraints). This approach assumes that B is co-infinite

20 GEORGE BARMPALIAS

(so that we are able to find arbitrarily many potential witnesses) before we
are able to show the satisfaction of the requirements. This assumption is
justified (i.e. can be proved) by allowing Qn to use B-witnesses only beyond
(in particular, to the left of) a certain point p(n)—the n-th point outside B
counting from right to left—which takes a final value in the course of the
construction.

Its time to turn this informal discussion into a formal strategy for a single
requirement, the QΦ,W,θ module described below. To save space, we present
it as the module of Qn (assuming that QΦ,W,θ is the n-th requirement in
an effective list Q0,Q1, . . . of all requirements); this does not affect the
clarity of the presentation since we can easily get the atomic module (i.e.
QΦ,W,θ working in isolation) by fixing n and considering r (the restraint
imposed by higher priority requirements) to be 0. The length of agreement
of ΦW = A ⊕ B;φ is ℓ(ΦW = A ⊕ B;φ). By convention we assume that
ΦW (t) ↓ implies that all the numbers below the use of the computation have
been ordered by θ.

Recall the intuition we built in the proof of theorem 5 on constructing a
representation: here we also have A and B lines and a black area for each of
these (see figure 2). The current value of B is the set of elements having been
assigned a position on the B-line and being currently outside B. At each
stage s the construction (stated later) will order s on the left of any point
outside A on the A-line, and similarly for B. This can be seen as building the
orderings of N associated with the representations A,B. To be consistent
with their representation nature, whenever an action enumerates a point into
A or B, we assume that all points on its left are also enumerated into the
same set (in our terminology, we expand the black area of the corresponding
set up to that point).

5.2.1. QΦ,W,θ-module.

(1) Choose an A-agitator a ∈ A on the left of any (current) A-agitator
of a higher requirement.

(2) Wait until ℓ(ΦW = A⊕B;φ) > 〈0, a〉.
(3) Wait until

(a) |B −R| > |E|
(b) ℓ(ΦW ;A⊕B) > 〈1, b〉 for all b ∈ I

where
• p(n) is the n-th point (from right to left) on the B-line, outside
B.

• R = {t ∈ B | t ≥θ p(n) or ∃k ≤ r(t ≥θ k ∧ k 6∈ B)}. These are
the restrained points.

• E = {t | t >θ minθ(W ↾ φ(〈o, a〉))} (it includes the rectification
codes against our planned diagonalizations, at any stage after
aց A); minθ is the minimum with respect to θ and by conven-
tion minθ ∅ = ∞θ, a symbol with the properties ∞θ 6∈ W and
for all n, n <θ ∞θ and ∞θ 6≤θ n.

HYPERSIMPLICITY AND SEMICOMPUTABILITY 21

• I is the set of the first |E| + 1 points on the B-line outside
B and after (i.e. on the right of) any element of R. It is the
set of B-witnesses for our future diagonalizations and is defined
provided that the first condition is satisfied.

Note that if there are less than n elements on the B-line outside
B, p(n) is undefined. R is the set of restrained elements; the compo-
nent r comes from the higher priority requirements and the compo-
nent p(n) comes from our intention to make sure that B is eventually
infinite. E contains the codes that can rectify the B-motivated diag-
onalizations we plan to do (for which we are searching witnesses in
this step) except the ones which are on the left of the leftmost rectifi-
cation code for ΦW 6= A⊕B;φ on 〈0, a〉 that will be created on step
4. These additional codes will vanish after step 4 and so we need not
take them into account. The symbol ∞θ is analogous to ∞A or ∞B

that we used in the proof of theorem 5.
The first condition asks for a number of points on the B-line out-

side B and outside the restrained segment R, greater than the num-
ber of elements which can rectify the diagonalizations that can be
performed using the former as witnesses. If it is satisfied, we are
guaranteed a successful diagonalization. Conversely, if indeed W is
a representation via θ, E will be (eventually) finite and since B is
infinite the condition will be satisfied. Finally, the second condition,
if satisfied, makes sure that all rectification codes for our potential
diagonalizations have been taken into account in E. Note that every
parameter has a current value; e.g. E considers only points (numbers
t)) that are currently defined on the W -line.

(4) Restrain I and put aց A. Dynamically redefine E = E−W . Once
we find suitable B-witnesses we restrain them from B for later use.
Note that this restraint is for the lower priority requirements, not
QΦ,W,θ itself (or the higher ones). The enumeration of our A-witness
into A triggers the ripple of diagonalizations that are going to follow
(as long as we get Φ-expansionary stages). It makes sure that after
the next expansionary stage E (as it was defined just before we enter
this step) will indeed contain every possible rectification code (and so
the plan is sound). Moreover we fix E to its last value (which is what
we were looking for), with the exception that elements that enter W
are deleted form E as they have no rectification potential; this way,
at any time after this step, E will indeed be the set of rectification
codes against our diagonalizations.

(5) (diagonalization loop)
(a) Wait until the next expansionary stage.
(b) Put the leftmost point of I ∩ B into B (and expand the black

area up to that point) and go to (a).

22 GEORGE BARMPALIAS

5.2.2. Analysis of Outcomes. Requirement Q works on the assumption that
the higher requirements have ceased to require attention (i.e. have rested).
If this is false, it will be initialized. From the module described above it
follows that every requirement eventually rests (since there are no infinite
loops—I is finite) and so in this analysis of outcomes we can assume that all
higher requirements have rested (or that we work with a single requirement
in isolation).

If we don’t have the chance to perform step 1 it will be because of the
lack of expansionary stages and so Q is satisfied in a very trivial way. The
rest of the outcomes are listed below:

w1 : we wait in step 2 forever. Then ΦW ;φ is partial and Q is satisfied.

w2 : we wait in step 3 forever. Then either we cease getting expansionary

stages (Q satisfied) or each time we get them one of the conditions
in step 3 fails. Since B is infinite (this is a working hypothesis which
will be the first thing to prove in the verification and it does not
depend on this analysis),

|B −R| → ∞ as s→ ∞

and so |E| → ∞ as s → ∞. But this means that minθ(W ↾

φ(〈0, a〉)) is a point on the W -line (and not ∞θ) and so W is not a
representation. Hence Q is satisfied and no B-restraints are imposed.

w3 : we wait in step 5(a) forever. Again, ΦW ;φ partial and Q is satisfied.

Finally there is a possibility that we are in 5(b) and unable to execute
it because I ∩ B = ∅. We show that this cannot happen; indeed when we
leave step 4 we hold (in I) |E|+ 1 elements of B and these will not enter B
unless Q instructs so (since they are restrained). An enumeration of any of
them at an expansionary stage will require W -rectification.

Before leaving step 4 we also put aց A currently being at an expansion-
ary stage, which means that before running step 5 some t ∈ W ↾ φ(〈0, a〉)
must enter W (for the diagonalization to be rectified). After this W enu-
meration any point that can rectify an I-diagonalization is in E: indeed, it
had a position on the W -line when we left step 3 and at that time it was
>θ minθ(W ↾ φ(〈0, a〉)) (otherwise it would have entered W by now). Now
every time we return to 5(a), |E ∩W | will be (at least) one less than it was
before; and since |I| = |E| + 1 (here E is as it was defined when we left
step 3) when we spend our last I-diagonalization, E ∩W = ∅ already and a
rectification (and so, leaving (a)) will be impossible.

5.2.3. Construction. At stage s put s on the A,B lines (outside the black
area) on the left of any existing point outside the black area. Consider the
least Q requiring attention (i.e. ready to perform the next step) and run the
corresponding module. Initialize all lower priority Q requirements.

5.2.4. Verification. First we verify our working hypothesis.

HYPERSIMPLICITY AND SEMICOMPUTABILITY 23

Lemma 1. B is infinite.

Proof. Suppose not, i.e. that p(n) → ∞ as s → ∞ for a least n. By the
Q module, no Qi, i ≥ n can act enumerating (some value of) p(n) ց B.
And since p(n) is (enumerated and) redefined infinitely often, there must
be a least Qi, i < n which enumerates values of p(n) into B infinitely often.
But this is not possible since each Q only requires attention finitely often
(given the finitary nature of the module—there are no infinite loops since I
is finite). �

And now, by an adaptation of the analysis of outcomes discussed earlier
we can show that each Q is satisfied. Suppose that Qi, i < n have stopped
requiring attention. After the last time they received attention, Qn will
start anew. If it does not execute step 3 (and so 4) its satisfaction follows as
in the analysis of outcomes. Otherwise steps 3,4 run and any rectification
point on the W line (at any stage) is either in E (as it was defined when
step 3 run) or on the left of the leftmost point < φ(〈0, a〉) on the W -line
outside W . So, since |I| > |E| the loop in step 5 has to stop at some point
due to the lack of expansionary stages, thus satisfying Qn.

References

[1] G. Barmpalias, The approximation structure of a computably approximable real, J.

Symbolic Logic 68, no.3 (2003) pp.885–922
[2] G. Barmpalias, Approximation Representations for ∆2 Reals, to appear in the Archive

for Mathematical Logic.

[3] G. Barmpalias, Approximation Representations for Reals and their wtt-Degrees, to

appear in Mathematical Logic Quarterly.

[4] C. Jockusch, Semirecursive sets and positive reducibility, Trans. Am. Math. Soc. 131

(1968)
[5] P. Odifreddi, “Classical recursion theory”, Amsterdam Oxford: North-Holand, 1989
[6] P. Odifreddi, “Classical recursion theory Vol.II”, Amsterdam Oxford: North-Holand,

1999
[7] R. I. Soare, “Recursively enumerable sets and degrees”, Berlin London: Springer-

Verlag, 1987

School of Mathematics, University of Leeds, Leeds LS2 9JT, U.K.

E-mail address: georgeb@maths.leeds.ac.uk

