
Algorithmic Randomness of Closed Sets*

GEORGE BARMPALIAS, School of Mathematics, University of Leeds,
Leeds LS2 9JT, UK.
E-mail: georgeb@math.leeds.ac.uk

PAUL BRODHEAD, DOUGLAS CENZER and SEYYED DASHTI,
Department of Mathematics, University of Florida, P.O. Box 118105,
Gainesville, Florida 32611, USA.
E-mail: brodhead@math.ufl.edu; cenzer@math.ufl.edu;
mashadeo@math.ufl.edu

REBECCA WEBER, Department of Mathematics, Dartmouth College,
Hanover, NH 03755-3551, UK.
E-mail: rebecca.weber@dartmouth.edu

Abstract

We investigate notions of randomness in the space C½2N� of non-empty closed subsets of f0, 1gN. A probability

measure is given and a version of the Martin-Löf test for randomness is defined. �0
2 random closed sets exist but

there are no random �0
1 closed sets. It is shown that any random closed set is perfect, has measure 0, and

has box dimension log2 ð4=3Þ. A random closed set has no n-c.e. elements. A closed subset of 2N may be defined as

the set of infinite paths through a tree and so the problem of compressibility of trees is explored. If Tn ¼ T \ f0, 1gn,

then for any random closed set ½T� where T has no dead ends, KðTnÞ � n�Oð1Þ but for any k, KðTnÞ � 2n�k þOð1Þ,

where K(�) is the prefix-free complexity of � 2 f0, 1g�.

Keywords: Computability, randomness, �0
1 classes.

1 Introduction

The study of algorithmic randomness has been of great interest in recent years. The basic
problem is to quantify the randomness of a single real number; here we will extend this problem
to the randomness of the set of paths through a finitely branching tree. Early in the last century,
von Mises [31] suggested that a random real should obey reasonable statistical tests, such as
having a roughly equal number of zeroes and ones of the first n bits, in the limit. Thus a random
real would be stochastic in modern parlance. If one considers only computable tests, then there
are countably many and one can construct a real satisfying all tests.

An early approach to randomness was through betting. Effective betting on a random
sequence should not allow one’s capital to grow unboundedly. The betting strategies used
are constructive martingales, introduced by Ville [30] and implicit in the work of Lévy [22],
which represent fair double-or-nothing gambling.

Martin-Löf [24] observed that stochastic properties could be viewed as special kinds
of measure zero sets and defined a random real as one which avoids certain effectively
presented measure 0 sets. That is, a real x 2 2N is Martin-Löf random if for every effective

*A preliminary version of this article appeared in the Proceedings of CIE 2006 [2].
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sequence S1,S2, . . . of c.e. open sets with �ðSnÞ � 2�n, x =2
T

n Sn. It is easy to see that this
is equivalent to the condition that we get if we replace 2�n above with qn for a computable
sequence ðqiÞ of rationals such that limi qi ¼ 0.

At the same time Kolmogorov [18] defined a notion of randomness for finite strings based
on the concept of incompressibility. The stronger notion of prefix-free complexity
was developed by Levin [21], Gács [16] and Chaitin [9] and extended to infinite words.
Schnorr [27] later proved that the notions of constructive martingale randomness, Martin-Löf
randomness and prefix-free randomness are equivalent.

In this article we want to consider algorithmic randomness on the space C of non-empty
closed subsets P of 2N. Some definitions are needed. Fix a finite alphabet
A ¼ f0, 1, . . . , k� 1g ¼ k; we will make use of the alphabets f0, 1g and f0, 1, 2g. For a finite
string � 2 An, let j�j ¼ n. Let � denote the empty string, which has length 0. A word ðaÞ of
length 1 is may be identified with the symbol a. For two strings �, �, say that � extends �
and write � v � if j�j � j�j and � ði Þ ¼ � ði Þ for i < j�j. Similarly �¯ x for x 2 2N means that
�ði Þ ¼ xði Þ for i < j�j. Let �_� denote the concatenation of � and �. Let
xdn ¼ ðxð0Þ, . . . , xðn� 1ÞÞ. Now a non-empty closed set P may be identified with a tree
TP � A� as follows. For a finite string �, let I(�) denote fx 2 2N : � � xg. Then
TP ¼ f� : P \ Ið�Þ 6¼ ;g. Note that TP has no dead ends, that is if � 2 TP then either
� _0 2 TP or � _1 2 TP.

For an arbitrary tree T � A�, let ½T� denote the set of infinite paths through T, that is,

x 2 ½T � () ð8nÞxdn 2 T:

It is well known that P � 2N is a closed set if and only if P ¼ ½T� for some tree T. P is a �0
1

class, or effectively closed set, if P ¼ ½T � for some computable tree T. Note that if P is a �0
1

class, then TP is a �0
1 set, but not in general computable. P is said to be a decidable �0

1 class
if TP is computable. P is said to be a strong �0

2 class, if TP is a �0
2 set, or equivalently if

P ¼ ½T� for some �0
2 tree; P is said to be a strong �0

2 class if TP is �0
2. Thus any�

0
1 class is also

a strong �0
2 class. Any decidable �0

1 class contains a computable element (in particular
the leftmost and rightmost paths) and similarly any strong �0

2 class contains a �0
2 element.

On the other hand, there exist �0
1 classes with no computable elements and strong �0

2 classes
with no �0

2 elements. The complement of a �0
1 class is sometimes called a c.e. open set.

There is a natural effective enumeration P0,P1, . . . of the �0
1 classes and thus an

enumeration of the c.e. open sets. Thus we can say that a sequence S0,S1, . . . of c.e. open sets
is effective if there is a computable function, f, such that Sn ¼ 2N � PfðnÞ for all n. For a
detailed development of �0

1 classes, see [7] or [8].
For background and terminology on computable functions and computably enumerable

sets, see [28].
The betting approach to randomness is formalized as follows.

DEFINITION 1.1 (Ville[30])

(i) A martingale is a function m : k<! ! ½0,1Þ such that for all � 2 k<!;

m ð�Þ ¼
1

k

Xk�1

i¼0

m ð� _iÞ:

(ii) A martingale m succeeds on X 2 kN if

lim sup
n!1

m ðXdnÞ ¼ 1:
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That is, the betting strategy results in an unbounded amount of money made on the k-ary
infinite sequence X.

(iii) The success set of m is the set S1½m� of all sequences on which m succeeds.

That is, a martingale on 2<! is the capital function of a fair double-or-nothing betting
strategy. When working on 3<! the strategy is triple-or-nothing.

DEFINITION 1.2
A martingale m is constructive (effective, c.e.) if it is lower semi-computable; that is, if there is a
computable function m̂ : k<! �N ! Q such that

(i) for all � and t, m̂ ð�, tÞ � m̂ ð�, tþ 1Þ < mð�Þ, and
(ii) for all �, limt!1 m̂ ð�, tÞ ¼ mð�Þ.

In other words, m(w) is approximated from below by rationals uniformly in w. A sequence
in kN is constructive martingale random if no constructive martingale succeeds on it.

Some flexibility may be gained by also considering non-monotonic martingales; i.e.
martingales which bet on the bits of a sequence out of order. While for a monotonic
martingale only the amount of the next bet is determined from the bits seen previously, for
a non-monotonic martingale both the amount and the location of the next bet are determined
from the bits seen previously (the next bit may precede them, follow them, or lie in

the middle). These martingales must obey two rules: the standard fair-betting rule that
monotonic martingales obey, and the rule that they never bet on the same bit twice. We
refer the reader to Downey and Hirschfeldt [11] for the formal definition.

Although a priori allowing non-monotonic martingales strengthens the notion of
randomness, since more strategies must be defeated, in fact in the c.e. case they
are equivalent. Muchnik et al. [25] (Theorem 8.9) show that ML-random sequences defeat
all computable non-monotonic martingales (in fact they show this with respect to general
measures, not just the coin-toss measure). The proof does not depend on the computability
of the martingale, however; the martingale is used to define a Martin-Löf test which may
be enumerated equally well alongside the enumeration of the martingale. Therefore, as
defeating all c.e. non-monotonic martingales is clearly sufficient to be ML-random, the
two are equivalent.

Prefix-free randomness for reals is defined as follows. A Turing machine M which takes
inputs from A*, where A is a finite alphabet, is called prefix-free if it has prefix-free
domain domðM Þ; that is, if � v � are strings in domðMÞ, then � must equal �. For any finite
string �, the prefix-free complexity of � with respect to M is

KMð�Þ ¼ min fj�j,1 : Mð�Þ ¼ �g:

There is a universal prefix-free function U such that, for any prefix-free M, there is a constant
c such that for all �

KUð�Þ � KMð�Þ þ c:

We let Kð�Þ ¼ KUð�Þ and call it the prefix-free complexity of �. Then x is called prefix-free
random if there is a constant c such that KðxdnÞ � n� c for all n. This means that the initial
segments of x are not compressible.

Algorithmic Randomness of Closed Sets 1043
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The equivalence of these three notions of randomness (via tests, betting or incompressi-
bility) is a result of Schnorr [27] and is a fundamental result in the theory of algorithmic
randomness. While these definitions and results are usually given for binary strings
and sequences, they carry over to k-ary strings and sequences as well. See for example

Calude [5, 6]. The following lemma will be needed.

LEMMA 1.3
If P is a �0

1 class of measure 0, then P has no random elements.

PROOF. Let T be a computable tree such that P ¼ ½T�, and for each n, let
Pn ¼

S
fIð�Þ : � 2 T \ f0, 1gng. Then fPngn2N is an effective sequence of clopen sets with

P ¼
T

n Pn and limn �ðPnÞ ¼ �ðPÞ ¼ 0. Furthermore,

�ðPnÞ ¼ 2�njT \ f0, 1gnj

and is therefore a computable sequence. Thus fPngn2N is a Martin-Löf test, showing that P has
no random elements.

We will want to use the following result from the literature [31]. g

THEOREM 1.4 (Von-Mises-Church-Wald Computable Selection Theorem)
For any random sequence x and any computable 1-1 function g, the sequence zðnÞ ¼ xðgðnÞÞ is
random.

2 Martin-Löf randomness of closed sets

In this section, we define a measure on the space C of non-empty closed subsets of 2N and use
this to define the notion of randomness for closed sets. We then obtain several properties
of random closed sets.

An effective one-to-one correspondence between the space C and the space 3N is defined
as follows. Let a closed set Q be given and let T ¼ TQ be the tree without dead ends such
that Q ¼ ½T�.

Define the code x ¼ xQ 2 f0, 1, 2gN for Q as follows. Let � ¼ �0, �1, �2, . . . enumerate the
elements of T in order, first by length and then lexicographically. We now define x ¼ xQ ¼ xT
by recursion as follows. For each n, xðnÞ ¼ 2 if � _

n 0 and � _
n 1 are both in T, xðnÞ ¼ 1 if

� _
n 0 =2T and � _

n 1 2 T and xðnÞ ¼ 0 if � _
n 0 2 T and � _

n 1 =2T. For example, if Q ¼ f0, 1gN,

then xQ ¼ ð2, 2, . . .Þ and if Q ¼ fyg, then xQ ¼ y. Let Qx denote the unique closed set Q such
that xQ ¼ x.

Now define the measure �� on C by

��ðXÞ ¼ �ðfxQ : Q 2 XgÞ:

Informally this means that given � 2 TQ, there is probability 1=3 that both � _0 2 TQ

and � _1 2 TQ and, for i¼ 0, 1, there is probability 1=3 that only � _i 2 TQ. In particular, this
means that Q \ Ið�Þ 6¼ ; implies that for i¼ 0, 1, Q \ Ið�_iÞ 6¼ ; with probability 2=3:

Let us comment briefly on why some other natural representations were rejected. Suppose
first that we simply enumerate all strings in f0, 1g� as �0, �1, . . . and then represent T by its
characteristic function so that xTðnÞ ¼ 1 () �n 2 T. Then in general a code x might not

represent a tree. That is, once we have ð01Þ =2T we cannot later decide that ð011Þ 2 T. Suppose
then that we allow the empty closed set by using codes x 2 f0, 1, 2, 3g� and modify our original
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definition as follows. Let xðnÞ ¼ i have the same definition as above for i � 2 but let xðnÞ ¼ 3

mean that neither � _
n 0 nor � _1 is in T. Informally, this would mean that for i¼ 0, 1, � 2 T

implies that � _i 2 T with probability 1=2. The advantage here is that we can now represent

all trees. But this is also a disadvantage, since for a given closed set P, there are many different

trees T with P ¼ ½T�. The second problem with this approach is that we would have ½T� ¼ ;

with positive probability. We briefly return to this subject in Section 6.
Now we will say that a closed set Q is (Martin-Löf) random if the code xQ is Martin-Löf

random. This definition clearly relativizes to any oracle in accordance with the definitions

of relative randomness in the Cantor space. Since random reals exist, it follows that random

closed sets exists. Furthermore, there are �0
2 random reals, so we have the following.

THEOREM 2.1
There exists a random closed set Q such that TQ is �0

2.

Note that if TQ is �0
2, then Q must contain �0

2 elements (in particular the leftmost path).

Since there exist strong �0
2 classes with no �0

2 elements, there are strong �0
2 classes Q such

that TQ is not �0
2.

The following lemma will be needed throughout.

LEMMA 2.2
For any Q � 2N which is either closed or open,

��ðfP : P � QgÞ � �ðQÞ:

PROOF. Let PCðQÞ denote fP : P � Qg. We first prove the result for non-empty clopen sets U

in place of Q by the following induction. Suppose U ¼
S

�2S Ið�Þ, where S � f0, 1gn. For n¼ 1,

either �ðUÞ ¼ 1 ¼ ��ðPCðUÞÞ or �ðUÞ ¼ 1=2 and ��ðPCðQÞÞ ¼ 1=3. For the induction step,

let Si ¼ f� : i_� 2 Sg, let Ui ¼
S

�2Si
Ið�Þ, let ui ¼ �ðUiÞ and let vi ¼ ��ðPCðUiÞÞ, for i¼ 0, 1.

Then considering the three cases in which S includes both initial branches or just one, we

calculate that

��ðPCðUÞÞ ¼
1

3
ðv0 þ v1 þ v0v1Þ:

Thus, by induction we have

��ðPCðUÞÞ �
1

3
ðu0 þ u1 þ u0u1Þ:

Now

2u0u1 � u 2
0 þ u 2

1 � u0 þ u1,

and therefore

��ðPCðUÞÞ �
1

3
ðu0 þ u1 þ u0u1Þ �

1

2
ðu0 þ u1Þ ¼ �ðUÞ:

For a closed set Q, let Q ¼
T

n Un, where Un is clopen and Unþ1 � Un for all n. Then P � Q if

and only if P � Un for all n. Thus

PCðQÞ ¼
\
n

PCðUnÞ,

so that

��ðPCðQÞÞ ¼ lim
n!1

��ðPCðUnÞÞ � lim
n!1

�ðUnÞ ¼ �ðQÞ:

Algorithmic Randomness of Closed Sets 1045
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Finally, for an open set Q, let Q ¼
S

n Un be the union of an increasing sequence of clopen
sets Un. Then, by compactness,

PCðQÞ ¼
[
n

PCðUnÞ,

so that

��ðPCðQÞÞ ¼ lim
n!1

��ðPCðUnÞÞ � lim
n!1

�ðUnÞ ¼ �ðQÞ:

This completes the proof of the lemma. g

Next we will consider the intersection of a random closed set with an interval I(�)
and the disjoint union of random closed sets.

First recall van Lambalgen’s theorem.

THEOREM 2.3 (Van Lambalgen [29])
The following are equivalent.

1. A	 B is n-random.
2. A is n-random and B is n-A-random.
3. B is n-random and A is n-B-random.
4. A is n-B-random and B is n-A-random.

Let us call the coding of a closed set Q by the nodes of its representative tree with no
dead ends the canonical code of Q. We wish now to introduce a second method of coding,
the ghost code. A ghost code of Q is an infinite ternary string whose terms correspond to
all nodes of 2<! in lexicographical order. The terms corresponding to the nodes of Q’s tree
(the ‘canonical nodes’) agree with the corresponding terms in the canonical code;
the remaining ‘ghost nodes’ may hold any values. Ghost codes are non-unique, and every

closed set has a non-random ghost code (if the closed set itself is random take the code with
ghost nodes all equal to zero, say). This method of coding is more convenient for some
purposes; for example, we will use it to show that if Q0,Q1 are closed sets
and Q ¼ f0_x : x 2 Q0g [ f1_x : x 2 Q1g, Q is random if and only if the Qi are
random relative to each other. The utility of the ghost codes rests on the following

correspondence.

THEOREM 2.4
The canonical code of a closed set Q � 2N is random if and only if Q has some random
ghost code. Furthermore, for any y, the canonical code r is y-random if and only if Q has
a ghost code which is y-random.

PROOF. (() Suppose the canonical code of Q is non-random. Then there is a c.e. martingale

m that succeeds on it. From any initial segment � of a ghost code g for Q, the subsequence
�̂ of exactly the canonical nodes of � is computable. Therefore it is computable whether
the bit of g after � is canonical or ghost. From m, define the martingale m0 which bets as
follows:

m0ð�_iÞ ¼
mð�̂ _iÞ next bit is a canonical node
m0ð�Þ next bit is a ghost node:

�

That is, m0 holds its money on ghost nodes and bets identically to m on canonical nodes. It is
clear that m0 succeeds on the ghost code g and thus g is non-random.
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()) Now suppose the canonical code r for Q is random, and let q be an infinite

ternary string that is random relative to r (and so by Theorem 2.3 r	 q is random).

We claim the ghost code g obtained by using the bits of r as the canonical nodes and

the bits of q in their original order as the ghost nodes is random. It is clear that g is a ghost

code for Q.
Suppose m is a c.e. martingale that bets on g. From m it is straightforward to define a

non-monotonic martingale m0 which mimics m’s bets exactly but performs them on r	 q,

succeeding whenever m succeeds. As r and q were chosen to be relatively random, this will

show g is random.
As discussed previously, from gdn it is computable whether g (n) will be a ghost node or

a canonical node, and which position in g or r it occupies in either case. Therefore, assuming

the bits seen so far may be assembled into an initial segment � of g, m0 takes the

values mð� _iÞ, i<3, as its bets on the corresponding bit of r or g, whichever is appropriate.

Having seen that bit, then, it can assemble a ðj�j þ 1Þ-length initial segment of g and

repeat the process. As m0 makes identical bets to m and has identical outcomes, since it cannot

succeed on r	 g, m cannot succeed on g and g is random.
To relativize ()), suppose that r is y-random, so that r	 y is random by Van Lambalgen’s

Theorem 2.3. Then in the proof simply choose q to be random relative to r	 y, and then

g will be random relative to y. The other direction relativizes in a straightforward way. g

The primary purpose of the ghost codes is to remove the dependence on the particular

closed set under discussion when interpreting bits of the code as nodes of the tree.

This is especially useful when subdividing the tree, as in the following definition.

DEFINITION 2.5
The tree join of closed sets P0 and P1 is the closed set

Q ¼ f0_x : x 2 P0g [ f1_x : x 2 P1g:

Given ghost codes r0, r1 for the Pi, their tree join r0&þ r1 is the code for Q with the

corresponding ghost node values.

The standard recursion–theoretic join is defined by

r0 	 r1 ¼ ðr0ð0Þ, r1ð0Þ, r0ð1Þ, r1ð1Þ, . . .Þ:

We wish to relate the recursion–theoretic join and the tree join.

LEMMA 2.6
Given two ghost codes r0, r1, the tree join r0&þ r1 is random if and only if the recursion

theoretic join r0	 r1 is random.

PROOF. It is clear that there is a computable permutation � which uniformly maps

any tree join r0&þ r1 to the recursion–theoretic join r0	 r1. That is, in r0	 r1, the entries

of r0 and r1 alternate, whereas r0&þ r1 starts with a 2, followed by blocks from r0 and r1,

as follows. First r0ð0Þ, r1ð0Þ, then r0ð1Þ, r0ð2Þ, r1ð1Þ, r1ð2Þ, and continuing with pairs of blocks

of size 4, 8 and so on. The result now follows from the Von-Mises–Church–Wald

Computable Selection Theorem 1.4. g

We now obtain the following corollary of Theorems 2.3 and 2.4, and Lemma 2.6.
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COROLLARY 2.7
Suppose Pi, i¼ 0, 1, are closed sets with canonical codes ri and let P be the tree join of P0,P1.

Then P is random if and only if r0	 r1 is random.

PROOF. (() Suppose that r0	 r1 is random. Then by Theorem 2.3, r0 and r1 are mutually

relatively random. By Theorem 2.4, P0 has a ghost code g0 which is random relative to

r1, and so also vice versa, and then P1 has a ghost code g1 which is random relative to g0.

Again by Theorem 2.3, the recursion–theoretic join g0	 g1 is random, so by Theorem 2.6

the tree join g0&þ g1 is also random, and hence P possesses a random ghost code and is

random.
()) Suppose now that P is random, and therefore possesses a random ghost code g.

The code g may be thought of as a tree join g0&þ g1, which is therefore random,

and so by Theorem 2.6, g0	 g1 is random. By Theorem 2.3, the individual codes g0, g1
are therefore mutually relatively random. Now by the relatived version of Theorem 2.4,

r0 is random relative to g1. But r1 is computable from g1 and hence r0 is

random relative to r1 as well. Similarly, r1 is r0-random and thus, again by 2.3, r0	 r1 is

random. g

3 Members of random closed sets

For any finite string � of length n, the probability that a closed set Q meets I(�) is ð2=3Þn.
For a computable real y, the sequence fQ : Q \ IðydnÞ 6¼ ;g thus forms a Martin-Löf test in

the space C of closed sets, which shows that y does not belong to any Martin-Löf random

closed set. That is, for each n, fx : Qx \ IðydnÞ 6¼ ;g is a c.e. open set and has measure ð2=3Þn

in f0, 1, 2gN, where Qx is the closed set with code x. We omit the details, since we will

now prove a stronger result.
For any computable, non-decreasing function f, we say that a real � 2 f0, 1gN is f-c.e.

if there exists a computable approximating function � such that, for all i 2 N,

(i) �ði, 0Þ ¼ 0;
(ii) lims �ði, sÞ ¼ �ðiÞ;
(iii) fs : �ði, sþ 1Þ 6¼ �ði, sÞg has cardinality � fðiÞ.

The reals which are f-c.e. for some computable function f are part of the well-known

Ershov hierarchy [14, 28].

THEOREM 3.1
Suppose that f is computable and bounded by a polynomial. Then no random closed set

has any f-c.e. paths.

PROOF. Let f be as above, � an f-c.e. real and P a closed set containing �. Let � be

the f-approximating function for �. Also let Mn � f0, 1gn be the set of different

�-approximations to �dn during the stages.
A priori, jMnj is exponential. However, for a fixed n, �dn can change at most

P
i<n fðiÞ

times, so jMnj is also bounded by a polynomial, i.e. there is k 2 N such that for almost all n,

jMnj < nk. Now let

Sn ¼
[
�2Mn

fP j P 2 C & P \ Ið�Þ 6¼ ;g: ð1Þ
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Then ðSnÞ is a uniformly c.e. sequence of open sets in the space C of closed sets of 2N and for

all n, P 2 Sn. Also for almost all n,

��ðSnÞ �
X
�2Mn

��ðfP j P 2 C & P \ Ið�Þ 6¼ ;gÞ ¼ jMnj 

2

3

� �n

� nk 

2

3

� �n

:

Since limn½n
k 
 ð2=3Þn� ¼ 0 there is a computable subsequence of ðSnÞ which is a Martin-Löf

test and so P is not random. g

For any K-trivial real A and any unbounded non-decreasing computable function h, A is h-c.e.

[26]. Thus it follows from Theorem 3.1 that a random closed set can have no K-trivial paths.

We observe that Theorem 3.1 cannot be extended to !-c.e. in general, because there are left-

c.e. (and hence !-c.e.) random reals, and by Theorem 3.13 each of these belongs to a random

closed set.

Recall that a real x is 1-generic if for any �0
1 class Q¼ [T], either x =2Q or there exists � 2T

such that I(�)�Q. Note that 1-genericity is closed downwards under Turing reductions below

00 [17].

THEOREM 3.2
No random closed set has any 1-generic �0

2 path.

PROOF. Let x be a 1-generic �0
2 real with an effective approximation x(n)¼ lims f(n, s), and let

P a closed set containing x. Let xs¼ (f(0, s), f(1, s), . . . and let Mn¼ {xsds : s> n} and observe

that by the 1-genericity of x every Mn contains an initial segment of x. That is, if

T¼ {� : (8s> n) not xsdsv �}, then we must have x =2 ½T�, so that some xsdsv x, or x2 [T],

This is because if x2 [T], then for some k, I(xdk)� [T]. But for any k and n, there certainly

exists s> n such that xdkvxsdk, which would put x =2 ½T� by the definition of T.

Now if (Sn) is as in (1) we have �ðSnÞ �
P

s>n
2
3

� �s
and P 2 \nSn. Since the sequenceP

s>n
2
3

� �n
is uniformly computable and converges to zero, there is a computable subsequence

of (Sn) which is a Martin-Löf test and so P is not random. g

It is a plausible conjecture that this can be extended to 1-generic paths in general.

THEOREM 3.3
If Q is a random closed set, then Q has no isolated elements.

PROOF. Let Q ¼ ½T � and suppose by way of contradiction that Q contains an isolated path x.

Then there is some node � 2 T such that Q \ Ið�Þ ¼ fxg. For each n, let

Sn ¼ fP 2 C : jf� 2 f0, 1gn : P \ Ið�_�Þ 6¼ ;gj ¼ 1g:

That is, P 2 Sn if and only if the tree TP has exactly one extension of � of length nþ j�j.
It follows that

jP \ Ið�Þj ¼ 1 () ð8nÞP 2 Sn

Now for each n, Sn is a clopen set in C and again by induction, Sn has measure ð2=3Þn. Thus
the sequence S0,S1, . . . is a Martin-Löf test. It follows that for some n, Q =2Sn. Thus there
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are at least two extensions in TQ of � of length nþ j�j, contradicting the assumption that

x was the unique element of Q \ Ið�Þ. g

COROLLARY 3.4
If Q is a random closed set, then Q is perfect and hence has continuum many elements.

THEOREM 3.5
Every random closed set contains a random element.

PROOF. Suppose that a closed set Q has no random element and consider the

following Martin-Löf test on the space C:

Ui ¼ fP j P 2 C and P � Vig

where ðViÞ is a universal Martin-Löf test on the Cantor space. By Lemma 2.2,

��ðUiÞ � �ðViÞ � 2�i so that ðUiÞ is a Martin-Löf test on C. But Q 2 \iUi, so Q is not

random. g

The previous results might suggest that every element of a random closed set is a random

real. However, it turns out that every random closed set contains a non-random real.
We need the following classic result of Chernoff [10] (a version of Bernoulli’s Weak Law of

Large Numbers) here and also for another theorem to follow. See [23] for an exposition.

LEMMA 3.6 (Chernoff)
Let E be an event which we will refer to as ‘success’. If E occurs with probability p, then

for any natural numbers n and any e with 0 � " � 1, the probability that out of n

mutually independent trials, the number of successes differs from pn by >"pn is �2�"2pn=3.

THEOREM 3.7
Not every element of a random closed set is random; in particular, the leftmost and

rightmost paths in a random closed set are not random reals.

PROOF. We will show that, for a random closed set Q, the leftmost path is not stochas-

tically random, that is, the asymptotic frequency of 0’s is 2=3. Since an effectively random

real in 2N must have asymptotic frequence of 1=2 for 0’s and 1’s, this will suffice to

prove that the leftmost path is not random. We define a Martin-Löf test as follows.

Fix a rational e such that 0 < " < 1. For each n, let Sn be the family of closed sets

(that is, codes for closed sets) such that the first n bits of the leftmost path have either

< ð2=3Þð1� "Þn, or > ð2=3Þð1þ "Þn occurrences of 0. By the definition of our probability

measure, we have

��ðSnÞ ¼
X

jm�2
3nj>

2
3"n

n
m

� �
2

3

� �m
1

3

� �n�m

:

It now follows from Chernoff ’s Lemma 3.9 that

��ðSnÞ � 2e�"22n=9:

Thus the measures of the test sets Sn have effective limit zero. It is easy to see that

the sequence {Sn} is computably enumerable. For each n, Sn is a clopen set and in fact the
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union of the finite family of intervals I(�) in C such that � codes a tree up to level n in which
the leftmost path has either < ð2=3Þð1� "Þn, or > ð2=3Þð1þ "Þn occurrences of 0.

Furthermore, S0
n ¼

S
p�n Sp is also a Martin-Löf test. It follows that for any random closed

set Q, and any " > 0, there is an n such that for all m � n, the frequency of 0’s in the first
m bits of the leftmost path is always within e of 2=3. Thus the leftmost path is not effectively
random. g

Recall that the leftmost and rightmost elements of any strong �0
2 closed set are �0

2.
Given Theorems 3.8 and 3.10, we ask: Does a�0

2 random closed set contain a�0
2 random path?

THEOREM 3.8
Every random strong �0

2 closed set contains a random �0
2 real.

PROOF. Let Q be a random strong �0
2 class. By Theorem 3.8, Q contains a random real x.

Let P be a �0
1 class in the Cantor space which contains only randoms and contains

x (this exists since the class of random reals is an effective union of �0
1 classes). Note

that P \Q is a non-empty strong �0
2 class and it follows that the leftmost path of P \Q is

a �0
2 real which must be random since it belongs to P. g

Note that the above theorem does not combine with the low basis theorem to establish
the existence of a low random real in any random strong �0

2 class. Thus we pose
the question of whether for any random closed set Q, if TQ is low, then Q has a low
random element.

Next we want to find a random closed set which does not contain a �0
2 path. Now

it is easy [7, 8] to construct a strong �0
2 class P of positive measure which contains no �0

2

elements; of course P must contain a random real since it has measure 1. The difficult
problem is to construct a random strong �0

2 class with no �0
2 elements. We have the

following result in this direction, which yields a random strong �0
3 closed set with no �0

2

elements.

THEOREM 3.9
For any set A there is an A-random closed set Q such that TQ �T A00 but Q has
no elements �T A0.

PROOF. It is enough if we prove the claim for A ¼ ; because the argument relativises
to any oracle A in a straightforward way. For A ¼ ; we use a finite injury construc-
tion over ;0 to construct Q with the above properties. In the construction we will
;0-approximate the canonical code of a tree T which has no �0

2 paths. To make sure that
the tree T is random we fix a �0

1 class P of positive measure in the space 3N (where the
code for T lies) which contains only randoms, and we make sure that at every stage
our approximation (as a finite ternary string) to T ’s canonical code can be extended
to a path in P. Then by compactness the canonical code of our tree will be in P and so
the tree will be random. The changes in the approximations are motivated by the
requirements:

Re : if �
;0

e is total then the real it defines is not in ½T �:

Let �s be a finite string approximation of the canonical code � we are building.
We will have j�sj ¼ s. Strategy Re will come into power after stage e and will restrain
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� up to some re � e (the default value is re½0� ¼ e). Also it might request some changes

in � after the e-th bit. We start with �0 ¼ ; and at stage sþ 1, assuming inductively

that �s # and ½�s� \ P 6¼ ; we ask for the least i< s such that Ri requires attention.

This happens if

(i) The longest defined initial segment � of �; 0

i, sþ1 is larger than ever before;
(ii) there exists � 2 f0, 1, 2g� such that �sdðmaxj<i rj½s�Þ v �, Ið�Þ \ P 6¼ ;, j�j ¼ sþ 1,

and � is not consistent with the finite tree with code �.

If there is no such i then we extend �s by one bit such that ½�sþ1� \ P 6¼ ;. Otherwise

we let �sþ1 ¼ � and ri½sþ 1� ¼ sþ 1. The construction proceeds in a straightforward

way and we can prove inductively that for every e, Re is satisfied, stops requiring attention

and re reaches a limit. Then the limit � ¼ lims �s exists and we also have that � is random

by compactness. The satisfaction of the requirements comes from a measure-theoretic

fact. Consider Re and inductively assume that after stage se no Ri with i< e requires

attention. Then r ¼ maxi<e ri will remain constant. Since P contains only randoms and

½�dmax i< e ri� \ P 6¼ ;,

�ð½�dr� \ PÞ > 0

and on the other hand, if � ¼ �; 0

e we have seen that

�f	 j 	 2 3N and 	 is the canonical code of a tree which has � as a pathg ¼ 0:

This means that if at stage se the requirement Re is not yet satisfied, it will receive attention

at a later stage and get satisfied permanently. g

As a converse to Theorem 3.8 we have the following.

THEOREM 3.10
For any random r 2 2N, there exists a random closed set containing r as a path.

The proof of this theorem was originally given by Joe Miller and Antonio Montalbán

and has been subsequently improved thanks to the anonymous referee.

PROOF. Let r be a random real and let x be the canonical code of an r-random closed set.

We alter x to the code x 0 of a closed set guaranteed to contain r but changed as little

as possible to achieve that.
To determine x 0ðnÞ, assume x 0dn has been defined. If x ðnÞ ¼ 2 or x (n) corresponds

to a node not along r, set x 0ðnÞ ¼ xðnÞ. If xðnÞ 2 f0, 1g corresponds to r(k), set x 0ðnÞ ¼ rðkÞ.
The closed set defined by x 0 will clearly contain r. For a contradiction, assume x0

is non-random and let m0 be a c.e. martingale that succeeds on it. We build a non-monotonic

martingale m to bet on x	 r. On bits of x, m will be a triple-or-nothing martingale; on r, it

will be double-or-nothing.
First note that from initial segments of x and r we may reconstruct an initial segment of

x 0 computably, and we always know from an initial segment of x 0 whether the next bit

is along r or not, and which bit of r it is. We will construct m so that after every stage

of betting (which will be one bet by m0 and one or two bets by m), the value of m is equal

to the value of m 0. At every stage it will be clear we have revealed enough bits of x and r to

reconstruct x 0 to the needed length.
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Suppose inductively m and m 0 hold equal capital after the stage of betting on the

last node of �¯ x 0. If the bit x0ðnÞ following � is not on r, m bets identically to

m0; i.e. mðxðnÞ ¼ iÞ ¼ m 0ð� _iÞ for i<3. In that case xðnÞ ¼ x 0ðnÞ so our inductive hypo-

thesis holds. If x0ðnÞ is on r, set mðxðnÞ ¼ 2Þ ¼ m0ð� _2Þ and for i¼ 0, 1, set

mðxðnÞ ¼ iÞ ¼ ð1=2Þ½m0ð� _0Þ þm0ð� _1Þ�. If x0ðnÞ ¼ 2, then the capital for both m and m 0 is

m0ð�_2Þ, so the inductive hypothesis holds and we proceed to the next stage.

Otherwise m bets on r(k) for the appropriate k, setting mðrðkÞ ¼ iÞ ¼ m0ð�_iÞ for i¼ 0, 1.

On r(k), the sum of m’s capital on each of the two outcomes must average to

the previous capital; as the previous capital was ð1=2Þ½m0ð� _0Þ þm0ð� _1Þ� this clearly

holds. By construction rðkÞ ¼ x0ðnÞ ¼ i, so both m and m0 now have capital m0ð� _iÞ and the

inductive hypothesis holds. As m0 is c.e., m will also be.
As the values of m0 along x0 are a subsequence of the values of m along x	 r, if m0 succeeds

so does m, contradicting our assumption on x	 r. Therefore x0 is the code of a

random closed set containing the given random path r. g

4 Measure and dimension
THEOREM 4.1
If Q is a random closed set, then �ðQÞ ¼ 0.

PROOF. We will show that in the space C of closed sets, the ��-probability that a closed set P

has Lebesgue measure 0, is 1. This is proved by showing that for each m, �ðPÞ � 2�m with

��-probability 0. For each m, let

Sm ¼ fP : �ðPÞ � 2�mg:

We claim that for each m, ��ðSmÞ ¼ 0. The proof is by induction on m.
For m¼ 0, we have �ðPÞ � 1 if and only if P ¼ 2N, which is if and only if xP ¼ ð2, 2, . . .Þ,

so that S0 is a singleton and thus has measure 0.
Now assume by induction that Sm has measure 0. Then the probability that a closed

set P ¼ ½T � has measure � 2�m�1 can be calculated in two parts.
(i) If T does not branch at the first level, say T0 ¼ fð0Þg without loss of generality.

Now consider the closed set P0 ¼ fy : 0_y 2 Pg. Then �ðPÞ � 2�m�1 if and only if

�ðP0Þ � 2�m, which has probability 0 by induction, so we can discount this case.
(ii) If T does branch at the first level, let Pi ¼ fy : i_y 2 Pg for i¼ 0, 1. Then

�ðPÞ ¼ ð1=2Þð�ðP0Þ þ �ðP1ÞÞ, so that �ðPÞ � 2�m�1 implies that at least one of

�ðPiÞ � 2�m�1. (Note that the reverse implication is not always true.) Let p ¼ ��ðSmþ1Þ.

The observations above imply that

p �
1

3
ð1� ð1� pÞ2Þ ¼

2

3
p�

1

3
p2,

and therefore p¼ 0.
To see that a random closed set Q must have measure 0, fix m and let S¼Sm. Then S is the

intersection of an effective sequence of clopen sets V‘, where for P ¼ ½T �,

P 2 V‘ () �ð½T‘�Þ � 2�m:
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Since these sets are uniformly clopen, the sequence m‘ ¼ ��ðV‘Þ is computable.

Since lim‘ m‘ ¼ 0, it follows that this is a Martin-Löf test and therefore no random set Q

belongs to
T

‘ V‘. Then in general, no random set can have measure � 2�m for any m. g

Recall that a �0
1 class P is decidable if TP is decidable. It follows that a non-empty

decidable �0
1 class must contain a computable element (for example, the leftmost path).

No computable real can be random and it follows that no decidable �0
1 class can be random.

We will extend this to arbitrary �0
1 classes in Corollary 4.3.

THEOREM 4.2
Let Q be a �0

1 class with measure 0. Then no subset of Q is random.

PROOF. Let T be a computable tree (possibly with dead ends) and let Q ¼ ½T �.

Then Q ¼
T

n Un, where Un ¼ ½Tn�. Since �ðQÞ ¼ 0, it follows from Lemma 2.2 that

limn ��ðPCðUnÞÞ ¼ 0. But PCðUnÞ is a computable sequence of clopen sets in

C and ��ðPCðUnÞÞ is a computable sequence of rationals with limit 0. Thus PCðUnÞ is

a Martin-Löf test, so that for any random closed set, there exists n such that P =2PCðUnÞ

and hence P is not a subset of Un. g

Since any random class has measure 0, we have the following immediate corollary.

COROLLARY 4.3
No �0

1 class can be random.

Surprisingly, we can compute the (Kolmogorov) box dimension of a random closed set,

and in fact it turns out that all random closed sets have the same dimension. The intuition

for this comes from the following lemma. For any function F mapping the space C of

closed sets into <, the expected value of F on C is the integral
R
FðPÞ with respect to the

probability measure ��.

LEMMA 4.4
In the space C of closed sets, the expected cardinality of f� 2 f0, 1gn : Q \ Ið�Þ 6¼ ;g is exactly

ð4=3Þn for every n, where Q is chosen uniformly at random according to ��.

PROOF. Let Sn ¼ f� 2 f0, 1gn : Q \ Ið�Þ 6¼ ;g, for a randomly chosen Q from C.
The proof is by induction on n. For n¼ 1, we have two cases. With probability 2=3,

cardðS1Þ ¼ 1 and with probability 1=3, cardðS1Þ ¼ 2. Thus the expected value is exactly 4=3.
For nþ 1, there are again two cases. With probability 2=3, cardðS1Þ ¼ 1, so that the expected

cardðSnþ1Þ equals the expected cardðSnÞ, which is ð4=3Þn by induction. With probability 1=3,
cardðS1Þ ¼ 2, in which case the expected cardðSnþ1Þ is twice the expected cardðSnÞ, that is,

2ð4=3Þn. Thus we have the expected value

cardðSnþ1Þ ¼
2

3

4

3

� �n

þ
1

3

 2

4

3

� �n

¼
4

3

� �nþ1

: g

The box dimension of a closed set in the Cantor space, if it exists, is given by the following

limit:

dimB FðQÞ ¼ lim
n!1

log2ðcardðTQ \ f0, 1gnÞÞ:

n
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(See [1] for this formulation of the box dimension in f0, 1gN.) Now by Lemma 4.4, the
expected value of ðTQ \ f0, 1gnÞ for a random closed set Q is ð4=3Þn, which suggests that the
box dimension of Q should be log2 ð4=3Þ.

LEMMA 4.5
Let Q be a random closed set. Then for any e>0, there exists a m 2 N such that, for all
n>m, ð4=3Þnð1� "Þn < card ðTQ \ f0, 1gnÞ < ð4=3Þnð1þ "Þn.

PROOF. For each n, let cn(Q), or just cn, denote card ðTQ \ f0, 1gnÞ. We will use three
applications of Chernoff ’s Lemma 3.9. First we show that there exists m such that for all
n > m, c6n � n. Since the tree TQ \ f0, 1g�6n�1 has at least 6n nodes, it follows from Chernoff ’s
Lemma that the number of branching nodes is less than n with probability � 2�n=6. Thus
c6n< n with probability <2�n=6. Then the probability that c6n < n for any n � m is less than

X1
n¼m

2�n=6 ¼
2�m=6

1� 2�1=6
:

This provides a computable sequence of clopen sets with measures bounded by a computable
sequence with limit zero and hence a Martin-Löf test. It follows that for any random closed
set Q, there exists m0 such that c6n � n for all n � m0. Now for n > m0, there are at least
6n2 nodes in TQ \ f0, 1g�12n�1 � f0, 1g�6n�1, so that again by Chernoff ’s Lemma, the
probability that <n2 of these are branching nodes is � 2�n2=6. It follows as above that
there exists m1 > 3 such that c12n � n2 for all n � m1. Now suppose that m � 12m1 and that
12n � m < 12ðnþ 1Þ < 16n. Then n � m1, so that

cm � c12n � n2 > ðm=16Þ2:

Again by Chernoff ’s Lemma, the probability that the number of branching nodes from
TQ \ f0, 1gn differs from ð1=3Þcn by > ð1=3Þc�1=4

n cn is < 2�
ffiffiffi
cn

p
=9. But this is exactly the

probability that cnþ1 differs from ð4=3Þcn by > ð1=3Þc�1=4
n cn. For n > m1, we know that

cn � n=16ð Þ
2, so that

ffiffiffiffiffi
cn

p
� ðn=16Þ and c�1=4

n � ð4=
ffiffiffi
n

p
Þ and hence 2�

ffiffiffi
cn

p
=9 � 2�n=144. Thus

the probability pn that cnþ1 differs from ð4=3Þcn by more than ðcn=9Þ
ffiffiffi
n

p
is < 2�n=144.

Then the probability that for any n � m1, cnþ1 differs from ð4=3Þcn by more than ð4=3Þ
ffiffiffi
n

p
cn is

bounded by

X1
n¼m

pn ¼
X1
n¼m

2�n=144 ¼
2�m=144

1� 2�144
:

This again provides a Martin-Löf test which shows that for any random closed set Q,
there exists m2 so that for n > m2,

ð�Þ
4

3
1�

1ffiffiffi
n

p

� �
cn � cnþ1 �

4

3
1þ

1ffiffiffi
n

p

� �
cn:

Now given e, choose m � m2 so that ð1þ 1ffiffiffi
m

p Þ
2 < 1þ " and 1� " < ð1� 1ffiffiffi

m
p Þ

2.
Then for any k,

cm
4

3

� �2k

ð1� 
Þk < cm
4

3

� �2k

1�
1ffiffiffiffi
m

p

� �2k

< cmþ2k < cm
4

3

� �2k

ð1þ
1ffiffiffiffi
m

p Þ
2k < cm

4

3

� �2k

ð1þ "Þk:
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Now let k be large enough so that

ð1� "Þmþk
� cm �

4

3

� �m

ð1þ "Þmþk:

Then the desired inequality

4

3

� �n

ð1� "Þn < cn <
4

3

� �n

ð1þ "Þn:

will hold for even n � mþ 2k. For odd n, this inequality will hold by the inequality ð�Þ

above. g

THEOREM 4.6
For any random closed set Q, the box dimension of Q is log2ð4=3Þ.

PROOF. Given " > 0, let m be given by Lemma 4.5. Then for n > m, we have

n log2
4

3
þ n log2ð1� "Þ � log2ðcardðTQ \ f0, 1gnÞ � n log2

4

3
þ n log2ð1þ "Þ,

so that

log2
4

3
þ logð1� "Þ �

log2ðcardðTQ \ f0, 1gnÞ

n
� log2

4

3
þ log2ð1þ "Þ,

and therefore dimBðQÞ ¼ limnðlog2ðcardðTQ \ f0, 1gnÞÞÞ=n ¼ log2ð4=3Þ. g

5 Prefix-free complexity of closed sets

In this section, we consider randomness for closed sets in terms of incompressibility of

trees. Of course, Schnorr’s theorem tells us that P is random if and only if the

code xP 2 f0, 1, 2gN for P is prefix-free random, that is, K3ðxPdnÞ � n�Oð1Þ. (Schnorr’s

theorem for arbitrary finite alphabets is shown in [6].) Here we write K3 to indicate

that we would be using a universal prefix-free function U : f0, 1, 2g� ! f0, 1, 2g�. However,

many properties of trees and closed sets depend on the levels Tn ¼ T \ f0, 1gn of the tree.

For example, if ½Tn� ¼ [fIð�Þ : � 2 Tng, then ½T � ¼
T

n ½Tn� and �ð½T �Þ ¼ limn!1 �ð½Tn�Þ.
So we want to consider the compressibility of a tree in terms of K(Tn). Now there is

a natural representation of Tn as a string of length 2n. That is, list f0, 1gn in lexicographic

order as �1, . . . , �2n and represent Tn by the string e1, . . . , e2n where ei ¼ 1 if �i 2 T and ei ¼ 0

otherwise. Henceforth we identify Tn with this natural representation.
It is interesting to note that the code for Tn will have a shorter length than the natural

representation. For example, if ½T � ¼ fyg is a singleton, then x ¼ y and for each n,

the code for Tn is xdn. If x is the code for the full tree f0, 1g�, then x ¼ ð2, 2, . . .Þ and the code

for Tn is a string of ð2n � 1Þ 2’s, those labels attached to nodes of length < n. For the

remainder of this section, we will use Tn to mean the natural representation and xn to mean

the code.
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One question here is whether there is a formulation of randomness in terms of
the incompressibility of Tn. We will give some partial answers. It seems plausible that

P¼ [T ] is random if and only if there is a constant c such that KðTnÞ � 2n � c for all n. We will
see that this is not possible for any tree. First we give a lower bound for the prefix-

free complexity of a random tree.

THEOREM 5.1
If P is a random closed set and T ¼ TP, then there is a constant c such that KðTnÞ �

7
6

� �n
�c

for all n.

PROOF. Let P ¼ ½T� be a random closed set. Let m be given by Lemma 4.5, for " ¼ ð7=6Þ, so
that for n > m,

cardðTnÞ �
7

6

� �n

:

It follows that the code xn for Tn has length � 7=6Þnð . Since x is random, we know that,
for n � m,

K3ðxnÞ �
7

6

� �n

� a,

for some constant a. Now we can compute xn from Tn, so that

KðTnÞ � K3ðxnÞ � b,

for some constant b. The result now follows.
That is, let U (mapping f0, 1g� to f0, 1g�) be a universal prefix-free Turing machine

and let KðTnÞ ¼ minfj�j : Uð�Þ ¼ Tng. Let M be a prefix-free machine M (mapping f0, 1g�

to f0, 1, 2g�) such that MðTnÞ ¼ xn. Then define V by

Vð�Þ ¼ MðUð�ÞÞ:

Then KVðxdnÞ � KðTnÞ, so that for some constant e, K3ðxnÞ � KðTnÞ þ e and

hence

KðTnÞ � K3ðxnÞ � e �
7

6

� �n

� b� e: g

Going in the other direction, we can compute Tn uniformly from xd2n, so that as above,

K3ðxd2
nÞ � KðTnÞ � b for some b. Thus in order to conclude that P is random, we would need

to know that KðTnÞ � 2n � c for some c. The next result shows that this is not possible, since

trees are naturally compressible.

THEOREM 5.2
For any tree T � f0, 1g�, there are constants k>0 and c such that KðT‘Þ � 2‘ � 2‘�k þ c

for all ‘.
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PROOF. For the full tree f0, 1g�, this is clear so suppose that � =2T for some � 2 f0, 1gm. Then

for any level ‘ > m, there are 2‘�m possible nodes for T which extend � and T‘ may be

uniformly computed from � and from the characteristic function of T‘ restricted to the

remaining set of nodes. That is, fix � of length m and define a prefix-free computer M as

follows. The domain of M is strings of the form 0‘1� where j�j ¼ 2‘ � 2‘�m. M outputs the

standard representation of a tree T‘ such that no extension of � is in T‘ and such that � tells us
whether strings not extending � are in T‘. It is clear that M is prefix-free and we have

KMðT‘Þ ¼ ‘þ 1þ 2‘ � 2‘�m. Thus KðT‘Þ � ‘þ 1þ 2‘ � 2‘�m þ c for some constant c.

Now ‘þ 1 < 2‘�m�1 for sufficiently large ‘ and thus by adjusting the constant c, we can

obtain c0 so that

KðT‘Þ � 2‘ � 2‘�m�1 þ c0: g

We might next conjecture that KðT‘Þ > 2‘�c is the right notion of prefix-free randomness.

However, classes with small measure are more compressible.

THEOREM 5.3
If �ð½T�Þ < 2�k, then there exists c such that, for all ‘,

KðT‘Þ � 2‘�kþ1 þ c:

PROOF. Suppose that �ð½T�Þ < 2�k. Then for some level n, Tn has < 2n�k nodes �1, . . . , �t.
Now for any ‘ > n, T‘ can be computed from the fixed list �1, . . . , �t and the list of nodes

of T‘ taken from the at most 2‘�k extensions of �1, . . . , �t. It follows as in the proof of

Theorem 5.2 that for some constant c and all ‘,

KðT‘Þ � 2‘�k þ ‘þ 1þ c:

Thus for large enough so that ‘þ 1 � 2‘�k, we have

KðT‘Þ � 2‘�kþ1 þ c,

as desired. g

Note that if �ð½T �Þ ¼ 0, then for any k, there is a constant c such that KðT‘Þ � 2‘�k þ c.

But by Theorem 4, random closed sets have measure zero. Thus if P is random, then it is

not the case that KðTnÞ � 2n�k.
Finally, we will construct an effectively closed set with not too much compressibility.

The standard example of a random real, Chaitin’s � [9], is a c.e. real and therefore �0
2.

Thus there exists a �0
2 random tree T and by Theorem 5.1, KðT‘Þ �

7
6

� �n
�c for some c. We

have a more modest result for �0
1 classes.

THEOREM 5.4
There is a �0

1 class P ¼ ½T � such that KðTnÞ � n for all n.
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PROOF. Recall the universal prefix-free machine U and let S ¼ f� 2 Dom ðUÞ : jUð�Þj � 2j�jg.

Then S is a c.e. set and can be enumerated as �1, �2, . . . . The tree T ¼
T

s T
s where Ts is

defined at stage s. Initially we have T 0 ¼ f0, 1g�. We say that �t requires attention at stage s � t

when � ¼ Uð�tÞ ¼ T s
n for some n (so that j�j ¼ 2n) and n � j�tj. Action is taken by selecting

some path �t 2 Ts of length n and defining Tsþ1 to contain all nodes of T s which do not

extend �t. Then � 6¼ Tsþ1
n and furthermore � 6¼ Tr

n for any r � sþ 1 since future action will

only remove more nodes from Tn.
At stage sþ 1, look for the least t � sþ 1 such that �t requires action and take the

action described if there is such a t. Otherwise, let Tsþ1 ¼ Ts.
Let A be the set of t such that action is ever taken on �t. Recall from the Kraft Inequality

that
P

t 2
�j�tj < 1. Since j�tj � j�tj, it follows that

P
t2A 2�j�tj < 1 as well. Now

�ð ½T� Þ ¼ 1�
P

t 2
�j�tj > 0 and therefore ½T � is non-empty.

It follows from the construction that for each t, action is taken for �t at most once.
Now suppose by way of contradiction that Uð�Þ ¼ Tn for some �t with j�j � n. There must

be some stage r � t such that for all s � r, T s
n ¼ Tn and such that action is never taken on

any t0 < t after stage r. Then �t will require action at stage rþ 1 which makes Trþ1
n 6¼ Tr

n , a

contradiction.

6 Conclusions and future research

In this article we have proposed a notion of randomness for closed sets and derived several

interesting properties of random closed sets. Random strong �0
2 classes exist but no �0

1 class

is random. A random closed set has measure zero and box dimension log2
4
3; it is perfect

and hence uncountable. Results on members of random closed sets include the following.

A random closed set contains no f-c.e. elements, if f is polynomially bounded. Every random

closed set Q contains a random real, not every element of a random closed set is random

and every random real belongs to some random closed set. On the other hand we do not know

the answer to the following.

PROBLEM 6.1
Does every random closed set with �0

2 canonical code contain a low random element?

We conjecture a negative answer. It is a well-known fact that every real is computed by

a random real. The corresponding question for trees is as follows.

PROBLEM 6.2
Let A by an incomputable set. Is there a random closed set such that all of its elements

compute A?

We have examined the notion of compressibility for trees based on the prefix-free

complexity of the nth level Tn of a tree. We showed that for any random closed set

(and hence for some strong �0
2 class), there exists c such that KðTnÞ � 7=6Þn � cð for all n.

We constructed a �0
1 class P ¼ ½T � such that KðTnÞ � n for all n. It seems a

reasonable conjecture that if KðTnÞ � 4=3Þn � cð for all n, then the closed set ½T � is random.

We would like to explore the notion that �0
1 classes are more compressible than arbitrary

closed sets.
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Other notions of randomness might also be considered. A general probability measure
�f may be defined on 3N from a function f : f0, 1, 2g� ! ½0, 1� such that

P
i¼0, 1, 2 f ð�

_iÞ ¼ 1
for all �. The interval I(�) then has �f -measure

Q
n<j�j f ð�dðnþ 1ÞÞ. We will say that �f is

a computable measure if f is computable. The probability measure � is non-atomic if for any
x 2 3N, �ðfxgÞ ¼ 0. The function f (and the corresponding measure �f) is bounded if there
is an upper bound b<1 such that f ð�Þ < b for all � 2 f0, 1, 2g�. It is easy to see that
any bounded measure is non-atomic. If there exist constants b0, b1, b2 strictly between 0 and 1,
such that for all �, f ð� _iÞ ¼ bi, then we will say that �f is regular. For any regular measure,
we can define the notion of a �-Martin-Löf test and the resulting notion of a
�-Martin-Löf-random (or just �-random) real. It is easy to see that �-random reals
exist for any � and hence �-random closed sets exist. The results on ghost codes and joins
will hold for any regular measure. The corresponding version of Lemma 2.2 will hold if � is
regular with b0 and b1 � ð1=2Þ. The proofs of Theorem 4.2 and Corollary 4.3, that no subset of
a measure-zero �0

1 class is random, also go through under this assumption.
Some of the results in this article may also be obtained for �f where fð� _iÞ � ð1=2Þ for

i¼ 0, 1. For example with respect to �f a random closed set will have no isolated elements and
it will always contain a random element. For any regular measure, either the leftmost or
the rightmost path will be non-random, since either b0 þ b2 > ð1=2Þ or b1 þ b2 > ð1=2Þ. The
proof of Theorem 3.6 that every random closed set has measure 0 seems to require, for
�f -randomness, that fð� _2Þ � ð1=2Þ for all �.

Returning to the notion of randomness which allows trees with dead ends, let b3 now be
the probability that a given node has no extensions and let the probability be regular as
above. Then a simple recursion shows the probability p of a given closed set being
empty satisfies the equation

p ¼ b3 þ ðb0 þ b1Þpþ b2p
2:

Solving for p, we obtain

ðp� 1Þðb2 p� b3Þ ¼ 0:

Thus either p¼ 1 or p ¼ ðb3=b2Þ. It follows that if b2� b3, then p¼ 1, that is, almost every
closed set is empty. Suppose now that b3 < b2 and let pn be the probability that a given tree T
has no paths of length n. Then it can be seen by induction that pn � ðb3=b2Þ for all n. That is,
p1 ¼ b3 � ðb3=b2Þ and then

pnþ1 ¼ b3 þ ð1� b2 � b3Þpn þ b2 p
2
n �

b3
b2

:

Hence in this case, the probability that a given closed set is empty is b3=b2 < 1. In this case,
one could presumably develop a notion of a random tree and a random closed set and explore
the properties of random closed sets.

A real x is said to be K-trivial if KðxdnÞ � KðnÞ þ c for some c. Much interesting work
has been done on the K-trivial reals. Chaitin showed that if A is K-trivial, then A �T 00.
Solovay constructed a non-computable K-trivial real. Downey et al. [12] showed that no
K-trivial real is c.e. complete. The notion of a K-trivial closed set was introduced in [4]. It was
shown in particular that every K-trivial class contains a K-trivial member, but there exist
K-trivial �0

1 classes with no computable members.
The related notion of a random continuous function was introduced in [3]. It was

shown that a random continuous function F on 2N cannot be computable, so that
the graph of F cannot be �0

1 class. For any random F and computable x, F(x) is a
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random real, however the image of F need not be a random closed set. The authors can now

show that the set of zeroes of a random continuous function is a random closed set.

Random Brownian motions have been studied by Fouche [15] and are a special case of
random continuous functions on the real line, which is another area of interest for further

research.
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A. Sorbi (eds), pp. 135–145. Vol. 4497 of Springer Lecture Notes in Computer Science,

Springer-Verlag, Berlin, 2007.
[5] C. Calude. Theories of computational complexity. Vol. 35 of Annals of Discrete

Mathematics, Elsevier, North-Holland, Amsterdam, 1988.
[6] C. Calude. Information and Randomness: An Algorithmic Perspective, Springer-

Verlag, Berlin, 1994.
[7] D. Cenzer and J. B. Remmel. �0

1 classes. ASL Lecture Notes in Logic, in press.
[8] D. Cenzer and J. B. Remmel. �0

1 classes. In Handbook of Recursive Mathematics, Vol. 2:

Recursive Algebra, Analysis and Combinatorics, Y. Ersov, S. Goncharov, V. Marek,
A. Nerode, J. Remmel (eds), pp. 623–821. Vol. 139 of Elsevier Studies in Logic and the

Foundations of Mathematics, 1998.
[9] G. Chaitin. Information-theoretical characterizations of recursive infinite strings.

Theoretical Computer Science, 2, 45–48, 1976.
[10] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on

the sums of observations. Annals of Mathematical Statistics, 23, 493–509, 1952.
[11] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity, in preparation.

Current draft available online at http://www.mcs.vuw.ac.nz/�downey/
[12] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan. Trivial reals. In Proceedings of the

7th and 8th Asian Logic Conferences, pp. 101–131.World Scientific Press, Singapore, 2003.

Algorithmic Randomness of Closed Sets 1061

 at U
niversity of L

eeds - L
ibrary on N

ovem
ber 13, 2011

http://logcom
.oxfordjournals.org/

D
ow

nloaded from
 

http://www.mcs.vuw.ac.nz/�downey/
http://logcom.oxfordjournals.org/


[13] R. Downey and L. Yu. Arithmetical sacks forcing. Archive for Mathematical Logic,

45, 715–720, 2006.
[14] Y. Ershov. A hierarchy of sets, Part I. Algebra and Logic, 7, 24–43, 1968.
[15] W. Fouche. Arithmetical representations of Brownian motion. Journal of Symbolic

Logic, 65, 421–442, 2000.
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[20] A. Kučera. On the use of diagonally nonrecursive functions. In Logic Colloquium ’87,

Ebbinghaus et al. (eds), pp. 219–239. North Holland, 1989.
[21] L. Levin. On the notion of a random sequence. Soviet Mathematics (Doklady),

14, 1413–1416, 1973.
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